
The Computational Complexity of Angry Birds

Matthew Stephenson

Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands

Jochen Renz, Xiaoyu Ge

Research School of Computer Science, Australian National University, Canberra, Australia

Abstract

The physics-based simulation game Angry Birds has been heavily researched by the AI community over the

past �ve years, and has been the subject of a popular AI competition that is currently held annually as part

of a leading AI conference. Developing intelligent agents that can play this game e�ectively has been an

incredibly complex and challenging problem for traditional AI techniques to solve, even though the game

is simple enough that any human player could learn and master it within a short time. In this paper we

analyse how hard the problem really is, presenting several proofs for the computational complexity of Angry

Birds. By using a combination of several gadgets within this game's environment, we are able to demonstrate

that the decision problem of solving general levels for di�erent versions of Angry Birds is either NP-hard,

PSPACE-hard, PSPACE-complete or EXPTIME-hard. Proof of NP-hardness is by reduction from 3-SAT,

whilst proof of PSPACE-hardness is by reduction from True Quanti�ed Boolean Formula (TQBF). Proof of

EXPTIME-hardness is by reduction from G2, a known EXPTIME-complete problem similar to that used

for many previous games such as Chess, Go and Checkers. To the best of our knowledge, this is the �rst

time that a single-player game has been proven EXPTIME-hard. This is achieved by using stochastic game

engine dynamics to e�ectively model the real world, or in our case the physics simulator, as the opponent

against which we are playing. These proofs can also be extended to other physics-based games with similar

mechanics.

Keywords: Computational complexity, AI and games, Physics simulation games, Game playing, Angry

Birds

1. Introduction

The computational complexity of di�erent video games has been the subject of much investigation over the

past decade. However, this has mostly been carried out on traditional style platformers [1, 2] or primitive

puzzle games [3, 4]. In this paper, we analyse the complexity of playing di�erent variants of the video

game Angry Birds, which is a sophisticated physics-based puzzle game with a semi-realistic and controlled

Email address: matthew.stephenson@maastrichtuniversity.nl (Matthew Stephenson)

Preprint submitted to Journal of Arti�cial Intelligence January 14, 2020



Figure 1: Screenshot of a level for the Angry Birds game.

environment [5]. The objective of each level in this game is to hit a number of pre-de�ned targets (pigs)

with a certain number of shots (birds) taken from a �xed location (slingshot), often utilising or avoiding

blocks and other game elements to achieve this. An example of an Angry Birds level is shown in Figure 1.

Angry Birds is a game of great interest to the wider AI research community due to the complex planning and

physical reasoning required to solve its levels, similar to that of many real-world problems. It has also been

used in the AIBIRDS competition [6] which tasks entrants with developing agents to solve unknown Angry

Birds levels and aims to promote the integration of di�erent AI areas [7]. Many of the previous agents that

have participated in this competition employ a variety of AI techniques, including qualitative reasoning [8],

internal simulation analysis [9, 10], logic programming [11], heuristics [12], Bayesian inferences [13, 14], and

structural analysis [15]. Despite many di�erent attempts over the past �ve years the problem is still largely

unsolved, with AI approaches far from human-level performance.

Video games have been the subject of much prior research on computational complexity, with many

papers proving speci�c games to be either NP-hard or PSPACE-complete. Examples of past proofs for

NP-hardness include games such as Pac-Man [4], Lemmings [16], Portal [17], Candy Crush [18], Bejeweled

[19], Minesweeper [20], Tetris [21], and multiple classic Nintendo games [1]. Proofs of PSPACE-completeness

have also been described for games such as Mario Bros. [22], Doom [4], Pokémon [1], Rush Hour [23], Mario

Kart [24] and Prince of Persia [2]. Interestingly, the video game Braid has been proven to be PSPACE-hard

[25] but not PSPACE-complete. However, none of these video games have yet been proven EXPTIME-hard.

Proofs of EXPTIME-hardness have previously been demonstrated for several traditional two-player board

games, including Chess [26], Checkers [27] and the Japanese version of Go [28]. As far as we are aware, no

single-player video game without a traditional opponent has ever been proven EXPTIME-hard before now.

Complexity proofs have also been presented for many di�erent block pushing puzzle games, including

2



Sokoban [29], Bloxorz [30] and multiple varieties of PushPush [31, 32, 33]. These proofs have been used to

advance our understanding of motion planning models due to their real-world similarities [34]. It is therefore

important that the computational complexity of physics-based games is investigated further, as playing video

games such as Angry Birds has much in common with other real-world AI and robotics problems [35]. A

physics-based environment is very di�erent from that of traditional games as the attributes and parameters

of various objects are often imprecise or unknown, meaning that it is very di�cult to accurately predict the

outcome of any action taken. Angry Birds also di�ers from many previously investigated games in terms of

its control scheme, as the player always makes their shots from the same location within each level (slingshot

position) and can only vary the speed and angle at which each bird travels from it. This heavily reduces the

amount of control that the player has over the bird's movement, with the game's physics engine being used

to determine the outcome of shots after they are made.

The remainder of this paper is organised as follows: Section 2 formally de�nes the Angry Birds game, as

well as the di�erent variants of it that will be used within our proofs; Section 3 describes the designs and

workings of several gates that will be used in later proofs; Sections 4 - 7 present proofs that particular variants

of Angry Birds are either PSPACE-complete, PSPACE-hard, NP-hard or EXPTIME-hard respectively;

Section 8 provides some suggestions and examples of how the presented proofs could be extended to other

games with similar mechanics; Section 9 concludes this work and proposes future possibilities.

2. Angry Birds Game De�nition

Angry Birds is a popular physics-based puzzle game in which the objective is to kill all the pigs within

a 2D level space using a set number of birds. Each level has a prede�ned size and any game element that

moves outside of its boundaries is destroyed. The area below the level space is comprised of solid ground

that cannot be moved or changed in any way, although other elements can be placed on or bounced o� of it.

Players make their shots sequentially and in a prede�ned order, with all birds being �red from the location

of the slingshot. The player can alter the speed (up to a set maximum) and angle with which these birds are

�red from the slingshot but cannot alter the bird's �ight trajectory after doing so, except in the case of some

special bird types with secondary e�ects that can be activated by the player. Once a bird has been �red,

it is removed from the level after not moving for a certain period of time. The level space can also contain

many other game elements, such as blocks, static terrain, explosives, etc. All game elements have a positive

�xed mass, friction, dimensions and shape (based on their type), and no element may overlap any other.

Birds that have yet to be �red are the only exception to this rule and may overlap other elements within

the level space (i.e. birds do not interact physically with other game elements until �red from the slingshot;

they are simply visible within the level for visual e�ect). The level itself also has a �xed gravitational force

that always acts downwards. If two objects collide they will typically bounce o� each other or one of the

objects will break. Calculations done with regard to object movement and resolving collisions are simulated

using a simpli�ed physics engine based on Newtonian mechanics. The exact mathematics and physical rules

3



of how the engine works are not provided as this would be incredibly long and tedious. Instead all proofs

presented in this paper are done at a high level, allowing the concepts and ideas to be easily extended to

other similar games or problems. All level designs presented in subsequent sections have taken the speci�c

physics of the engine into consideration and can be demonstrated to work within the original Angry Birds

game environment.

The description of an Angry Birds level can be formalised as Level = (Lx, Ly, slingshot, birds, pigs, other).

• Lx is the width of the level in pixels.

• Ly is the height of the level in pixels.

• slingshot is the pixel coordinates (x, y) from which the player makes their shots.

• birds is a list containing the number (Nb), type and order of the birds available.

• pigs is a list containing the type, angle and pixel coordinates (x, y) of all the pigs.

• other is a list containing the type, angle and pixel coordinates (x, y) of all other game elements;

including blocks, static terrain and other miscellaneous objects not considered for our presented proofs.

The top left corner of a level is given the coordinates (0, 0) and all other coordinates use this as a

reference point. The width and height of a level must be speci�ed as non-negative integer values, and all

pixel coordinates must be de�ned as integers within the level space. All numerical values are assumed to be

stored in binary, meaning that the size of a given level description is logarithmic with respect to the values

inside of it. The precision with which the angle of a pig or other game element within the level description

can be de�ned is set to some arbitrary value (e.g. 0.01 degrees) as the rotation of objects is not important

for the proofs presented in this paper. The type of a bird, pig or other game element is de�ned using a �xed

length word (e.g. �red� or �small�). How the number of birds (Nb) is de�ned greatly impacts the complexity

of the game, with further details on this point described in Section 2.1. There is also a �nite sized list which

contains all the possible types of birds, pigs and other game elements, as well as their properties (e.g. mass,

friction, size, etc.). This list is �xed in size and so is not relevant to the complexity of the game.

One important point that must be addressed is how the properties of certain game elements (position,

angle, speed, etc.) are represented within the game engine. Whilst the initial location of each game element

is de�ned using integer values (pixel coordinates), when the game is being played it is highly likely that the

location of an object could be much more precise (i.e. sub-pixel values). For our proofs we assume that the

current state of a level, including the current properties of all game elements within it, can always be stored

in a polynomial number of bits.

A strategy (S) for solving a given level description consists of a sequence of ordered shots (A1, A2, ..., ANb
).

Each shot (Ai) consists of both a pixel coordinates (x, y) within the level space (release point), which

determines the speed (vb) and angle (ab) with which each of the available birds is �red, as well as a tap time

4



for activating each bird's secondary e�ect (ability) if it has one. For our presented proofs we do not use any

bird abilities, meaning that a particular shot Ai can be de�ned using just a release point (x, y). A level is

won/solved once all pigs have been killed, and is lost/unsolved if there are any pigs left once all birds have

been used.

While the speed with which a bird can be �red is bounded, and therefore can only be determined to a

set level of precision, the angle of a shot is a rational value that is determined by the release point given.

The tap time for activating a bird's ability must occur before the bird collides with another game element

or moves out of bounds. Therefore, the precision with which shots can be speci�ed, as well as the number of

bits required to de�ne a shot and the number of distinct shots possible, is polynomial in the size of the level

(i.e. the size of the level dictates the number of possible release points/shot angles and tap times, which in

turn determines the number of distinct shots possible), and is exponential relative to the size of the level

description (as all numerical values are speci�ed in binary). This means that the number of possible distinct

shots that a player can make increases as the size of the level increases (i.e. no �xed arbitrary precision on

possible shot angles), but this number is always bounded by the size of the level (Lx × Ly).

The decision problem we are considering in this paper can be formalised as:

Angry Birds Formal Decision Problem

Instance: Angry Birds level description (Level).

Question: Is there a strategy S that always results in all pigs being killed?

This is the same problem that is faced by both level designers and play testers for this game.

For the proofs described in this paper the following game elements are required:

• Red Birds: These are the most basic bird type within the game and possess no special abilities. Once

the player has determined the speed and angle with which to �re this bird it follows a trajectory

determined by both this and the gravity of the level, which the player cannot subsequently a�ect. This

bird has no secondary e�ect so a tap time is not needed.

• Small Pigs: These are the most basic pig type within the game and are killed once they are hit by

either a bird or block.

• Unbreakable Blocks: These are blocks that do not break if they are hit but instead react in a semi-

realistic physical way, moving and rotating if forces are applied to them. They are represented in this

paper by blocks made of stone.

• Static Terrain: This is simply a set area of the level that cannot move or be destroyed. Static terrain is

also not a�ected by gravity, meaning that it can be suspended in the air without anything else holding

it up. It is represented in this paper by plain, untextured, brown areas. The ground at the bottom of

the level space also behaves in the same way as static terrain.

5



For our proofs, we assume that the size of a level is not bounded by the game engine and that the player's

next shot only occurs once all game elements are stationary. We also assume that the physics calculations

performed by the game engine are not impacted or a�ected as the size of the level increases (i.e. no glitches

or other simulation errors) and that there is no arbitrary �xed precision with regard to the angles that

shots can have (i.e. the number of distinct shots possible always increases and decreases based on the size

of the level). As the exact physics engine parameters used for Angry Birds are not currently available for

analysis, all assumptions made about the game and its underlying properties are determined through careful

observation.

2.1. Game Variants

While an Angry Birds level that is created using the above description can be shown to be at least

NP-hard, by making additional speci�cations on the type of physics engine used or how a level is described,

we can increase its complexity further. Deciding whether a particular version of Angry Birds is NP-hard,

PSPACE-hard, PSPACE-complete or EXPTIME-hard is based on a combination of two factors.

Number of Birds: The �rst factor is whether the number of birds that the player has is polynomial

or exponential relative to the size of the level description. In practical terms this means, does the type and

order of each bird have to speci�ed individually (i.e. an explicit list of all bird types, e.g. [red, blue, black,

red, yellow]) or can the number of birds simply be stated if all birds are the same type (i.e. [red, 5] rather

than [red, red, red, red, red])? If this abbreviated version of birds is valid within the level description then

the player can potentially have an exponential number of birds, otherwise only a polynomial number of birds

is possible.

Probabilistic Model: The second factor is whether the physics engine used by the game is deterministic

or stochastic. A game engine that is deterministic will always base its output only on the player's input,

and so the outcome of any action can be calculated in advance. However, if the game engine is stochastic in

nature then physical interactions between game elements may be in�uenced slightly by randomly generated

values. This randomness within the engine is used to simulate the e�ects of unknown variables in the real

world. Speci�c real-world properties such as air movement (wind), temperature �uctuations, di�erences in

the gravitational �eld, object vibrations, etc., might a�ect the outcome of a physical action. These e�ects

are usually not modelled and add some stochasticity to the outcome of physical actions. For Angry Birds,

the source of this stochasticity comes from a random amount of noise that is included when collisions occur

within the game's physics-engine, causing the object(s) involved in the collision to move slightly di�erently

each time. This means that even if the same collision occurs multiple times for the exact same level state,

the outcome may not always be the same. These changes are typically not very large, often only a�ecting

the outcome very slightly within a pre-de�ned range of options. While the player might know the di�erent

outcomes that an action could have, they may not know exactly which one will occur until after said action

is performed. Please note that for the sake of our proofs we consider a game containing elements with

6



Game Version

Number of Birds Probabilistic Model Acronym Complexity

Polynomial Deterministic ABPD NP-hard

Exponential Deterministic ABED PSPACE-complete

Polynomial Stochastic ABPS PSPACE-hard

Exponential Stochastic ABES EXPTIME-hard

Table 1: Complexity results summary.

pseudorandom behaviour/physics to still be deterministic, as long as the random seed used to de�ne them

can be encoded in a polynomial number of bits (i.e. not truly stochastic) [1].

Table 1 shows how altering these two factors within the Angry Birds game a�ects its complexity. For

each of our subsequent complexity proofs, we will assume that we are using the appropriate version of Angry

Birds as de�ned by this table. These di�erent game versions will be abbreviated as ABPD for our NP-hard

variant, ABED for our PSPACE-complete variant, ABPS for our PSPACE-hard variant, and ABES for our

EXPTIME-hard variant.

3. Gates

Before presenting our complexity proofs we will �rst de�ne three di�erent �gates� as well as a Crossover,

that help dictate the outcomes of shots taken by the player. The design and behaviour of these gates is

described here so that they can be easily referred to in later sections. Depending on the speci�c physics

parameters of the environment and objects used, the exact values used to de�ne each gate's design may vary.

However, a gate that works for certain velocities and gravitational forces can always be created. The design

and parameters of these gates have been �ne-tuned for the Angry Birds game engine to prevent elements

within them from moving in unintended ways, but could easily be generalised to di�erent game environments.

3.1. Selector Gate

The Selector gate implementation for Angry Birds is shown in Figure 2. The Selector gate can exist in one

of two states, �select-left� or �select-right�, and essentially mimics the behaviour of a 2-output demultiplexer.

A summary of the Selector gate behaviour is shown in Table 2.

Property 3.1. A bird which enters a Selector gate at TI will exit the Selector gate at TL, if and only if the

Selector gate is in the select-left position. Otherwise the bird will exit out of TR.

Property 3.2. A bird which enters a Selector gate at LI will exit the Selector gate at LO and set the Selector

gate to the select-left position.

Property 3.3. A bird which enters a Selector gate at RI will exit the Selector gate at RO and set the

Selector gate to the select-right position.

7



(a) (b)

Figure 2: Models of the Selector gate (a) in the �select-left� position and (b) in the �select-right� position.

Selector gate

Current gate position

select-left select-right

Entrance Exit Next gate position Exit Next gate position

TI TL select-left TR select-right

LI LO select-left LO select-left

RI RO select-right RO select-right

Table 2: Selector gate summary, shows exits and next gate positions for given entrances and current gate positions.

3.2. Automatically Unsetting Transfer Gate

The Automatically Unsetting Transfer Gate (AUT gate) implementation for Angry Birds is shown in

Figure 3. The AUT gate can exist in one of two states, �select-left� or �select-right�. A summary of the AUT

gate behaviour is shown in Table 3.

Property 3.4. A bird which enters an AUT gate at TI will exit the AUT gate at TL and set the AUT gate

to the select-right position, if and only if the AUT gate is in the select-left position. Otherwise the bird will

exit out of TR and not change the AUT gate's position.

Property 3.5. A bird which enters an AUT gate at LI will exit the AUT gate at LO and set the AUT gate

to the select-left position.

3.3. Random Gate

The Random gate implementation for Angry Birds is shown in Figure 4. The Random gate can only be

used in variants of Angry Birds with a stochastic game engine (ABPS and ABES), and essentially mimics

the behaviour of a random binary splitter.

Property 3.6. A bird which enters a Random gate at point T has a non-zero probability of exiting at point

L (P (L) > 0) and a non-zero probability of exiting at point R (P (R) > 0).

8



(a) (b)

Figure 3: Models of the AUT gate (a) in the �select-left� position and (b) in the �select-right� position.

AUT gate

Current gate position

select-left select-right

Entrance Exit Next gate position Exit Next gate position

TI TL select-right TR select-right

LI LO select-left LO select-left

Table 3: AUT gate summary, shows exits and next gate positions for given entrances and current gate positions.

Justi�cation. When a bird enters a Random gate at T , it will hit the tip of the point. When this happens

the physics engine will use randomly generated values to slightly alter the physics of the impact, with three

possible outcomes: the bird falls down the left tunnel (exit at L), the bird falls down the right tunnel (exit

at R), the bird remains on the point and falls neither left nor right (does not exit the gate). Property 3.8 is

true if the probability for each of the �rst two outcomes occurring is greater than zero, which is the case for

the stochastic Angry Birds game environment.

3.4. Crossover

The Crossover implementation for Angry Birds is shown in Figure 5.

Property 3.7. A bird which enters a Crossover at DI will exit the Crossover at DO.

Property 3.8. A bird which enters a Crossover at VI will exit the Crossover at VO.

3.5. Gate Representation

For the diagrams presented in the following proofs we will use a more compact way of representing gates,

see Figure 6. Squares represent Selector gates, circles represent AUT gates, and triangles represent Random

gates, with the location of the arrows representing the entries to and exits from each gate. Arrows leading

9



Figure 4: Model of the Random gate. Figure 5: Model of the Crossover.

Figure 6: Selector gate (left), AUT gate (middle) and Random gate (right) compact representations, used in our subsequent

proof diagrams.

from the exit of one gate to the entrance of another, represent tunnels that can be used to connect multiple

gates together. A bird will travel along this tunnel, provided that the start of the tunnel is not below the

end (bird is essentially falling down the tunnel). If a particular arrow is not given for a speci�c gate, then

that entry or exit is not used (blocked o� with static terrain). Any bird that attempts to leave through

an exit that is blocked o� will be trapped inside the gate, with the bird subsequently disappearing after a

short period of time. Crossovers do not have a compact representation, and are instead used to deal with

any intersecting tunnels between gates. Note that even though the exact entry and exit locations on the

compact gate representations do not match those on the actual gate models/designs, additional tunnels and

Crossovers can be easily used to adjust the entry and exit locations for each gate. Therefore an Angry-Birds

reduction can be represented by an equivalent "circuit diagram".

3.6. Terminology

Selector gates with TR blocked o� can be thought of as being very similar to that of a �door� mechanism

used in several previous video game complexity proofs [1, 4, 36]. For the sake of both intuitive names and

consistent terminology with prior work, we de�ne new terms for our Selector and AUT gates. If a gate is in

the select-left position then we say that the gate is �open�, and if the gate is in the select-right position then

10



we say that the gate is �closed�. If a gate is open then we say that it can be �traversed� by �ring a bird into

TI , which will then exit out of TL. A gate can be �opened� by �ring a bird into LI or �closed� by �ring a bird

into RI . Entrances TI , LI and RI are referred to as the �traverse�, �open� and �close� paths respectively.

In subsequent proof diagrams that use the compact gate representation shown in Figure 6, Selector or AUT

gates that are initially closed (i.e. select-right) will have a single line border while those that are initially

open (i.e. select-left) will have a double line border. This terminology only applies to the Selector and AUT

gates, not the Random gate.

4. PSPACE-Completeness of ABED (exponential and deterministic)

For our proof of PSPACE-hardness, we will reduce from the PSPACE-complete problem TQBF, which

consists of determining if a given quanti�ed 3-CNF Boolean formula is �true�. In order to demonstrate that

Angry Birds is PSPACE-hard, it must be possible to construct a level that represents any given quanti�ed

Boolean formula, which can only be solved if the quanti�ed Boolean formula is true (i.e. the player will be

able to kill the pig(s) within the level by making shots with their bird(s), if and only if the quanti�ed Boolean

formula that the level was based on is true). We can also extend this proof to PSPACE-completeness if the

problem of solving ABED levels is also in PSPACE. Due to the length and complexity of our presented

proofs, this section will be split into the following sub-sections: Section 4.1 describes a high-level overview

of the framework that we will use to prove that solving ABED levels is PSAPCE-hard; Section 4.2 describes

how we can create the gadgets for this framework within the ABED environment; Section 4.3 describes a

method for constructing this framework within the ABED environment using our designed gadgets; Section

4.4 describes a possible winning strategy for an ABED level based on an example quanti�ed Boolean formula;

and Section 4.5 proves that solving ABED levels is also in PSPACE.

4.1. Framework

For our proof of PSPACE-hardness by TQBF reduction, we will use a heavily modi�ed version of the

general framework described in [1, 4, 36]. This framework uses a systematic procedure to verify if a quanti�ed

Boolean formula is true. This process can be de�ned in general terms, allowing it to be applied to any game

environment (including Angry Birds).

TQBF veri�cation process:

1. The player initially chooses the value of all existentially quanti�ed variables, and the value of all

universally quanti�ed variables is set to positive.

2. Check that all clauses within the quanti�ed Boolean formula are satis�ed (if not then cannot proceed).

3. If all universally quanti�ed variables have a negative value, then the quanti�ed Boolean formula is true

(veri�cation process complete).

11



4. The universal quanti�er (UQR) with the smallest scope (rightmost universal quanti�er in Boolean

formula) that has a positive value for its variable, has the value of its variable set to negative.

5. The player can change the value of any existentially quanti�ed variables within the scope of UQR, and

all universally quanti�ed variables within the scope of UQR are set to positive.

6. Go to step 2.

As an example, given a quanti�ed Boolean formula with three universally quanti�ed variables (x,y,z) of

decreasing scope size, the order in which the universal variables are veri�ed is as follows: (1,1,1) (1,1,0)

(1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1) (0,0,0).

This process can be successfully completed if and only if the given quanti�ed Boolean formula is true.

While we will still be using this same TQBF veri�cation process for our proposed Angry Birds proof,

the overall design of the framework for applying this procedure will be signi�cantly di�erent from those of

previous game examples. This is mostly due to the fact that Angry Birds does not have a single controllable

�Avatar�, and thus has no easy way of achieving a sense of �player traversal�. The general design of our TQBF

veri�cation framework for Angry Birds is shown in Figure 7. This framework can be used to prove that a

game is PSPACE-hard by constructing the necessary �gadgets� (each box within the general framework

diagram). Each of these gadgets serves a distinct purpose and simpli�es the complex physics of Angry Birds

into more easily manageable sections (for our proofs, each gadget is made up of multiple interconnected

gates). For each existential quanti�er in the Boolean formula there is an associated Existential Quanti�er

(EQ) gadget, for each Clause in the Boolean formula there is an associated Clause gadget, and for each

universal quanti�er in the Boolean formula there is both an associated Universal Quanti�er True (UQ-T)

gadget and Universal Quanti�er False (UQ-F) gadget. There is also a Finish gadget, which the player must

be able to �pass through� in order to solve the level. Figure 7 demonstrates an example arrangement of these

gadgets using the quanti�ed Boolean formula ∃x∀y∃z∀w((x ∨ y ∨w) ∧ (y ∨ ¬z ∨ ¬w) ∧ (¬x ∨ ¬y ∨ z)) as an

example (each variable in a Boolean formula can have either a �positive� or �negative� truth value). Using

this framework, if the necessary gadgets can be created and arranged in our ABED environment within

polynomial time, then ABED is PSPACE-hard. While it may initially seem unclear as to how exactly this

framework can be used to prove PSPACE-hardness, the following sections will describe the function of each

gadget, as well as how these gadgets combine together within the framework to apply our described TQBF

veri�cation process.

4.1.1. Formal framework reference terms

In this section we de�ne some formal terms that can be used to reference speci�c gadgets within our

framework:

De�nition 1. (enabled, disabled, current, next, next adjacent, next UQ-F, previous, �rst, last): Each gadget

can either be �enabled� or �disabled� (exactly what this means for each type of gadget is discussed in the

12



Figure 7: General framework diagram for PSPACE-hardness (ABED).

next section). The �current� gadget (Qi) is the (vertically) lowest enabled gadget in the general framework

diagram (Figure 7). The �next� gadget (Qi+1) for the current gadget is indicated by the arrows in our general

framework diagram, which represent the scope of each quanti�er. For each UQ-F gadget there are two possible

next gadgets, the next gadget for the UQ-T gadget associated with its variable (horizontal output arrow in

Figure 7) referred to as the �next adjacent� gadget, and the UQ-F gadget directly below it (vertical output

arrow in Figure 7) referred to simply as the �next UQ-F� gadget (note that the last UQ-F gadget has no

next UQ-F gadget). The �previous� gadget (Qi−1) refers to the most recent current gadget (i.e. essentially

the opposite of the next gadget). We also de�ne the terms ��rst� gadget and �last� gadget with respect to

the vertical position of speci�c gadget types in our general framework diagram. The highest of a particular

gadget type is the �rst gadget of that type, whilst the lowest is the last gadget (e.g. for Figure 7, the UQ-F

Gadget for the variable w is the �rst UQ-F gadget, whilst the EQ Gadget for z is the last EQ Gadget).

4.1.2. Gadget design requirements

In this section we describe the purpose and requirements of the gadgets that will need to be followed by

our speci�c ABED gadget implementations / level construction:

EQ gadget: If an EQ gadget is enabled then the player can use it to set the value of its associated

variable to either positive or negative. Doing this disables the EQ gadget and allows the player to enable

13



the next gadget.

UQ-T gadget: If a UQ-T gadget is enabled then it automatically sets the value of its associated variable

to positive. The player can then enable the next gadget which also disables the UQ-T gadget.

UQ-F gadget: If a UQ-F gadget is enabled then it alternates between allowing the player to do either

of the following two actions: (A) the player can set the value of its associated variable to negative, which

disables the UQ-F gadget and allows the player to enable the next adjacent gadget; or (B) the player can

disable the UQ-F gadget and enable the next UQ-F gadget. Note that, as previously mentioned, the last

UQ-F gadget does not have a next UQ-F gadget. Attempting to enable the next UQ-F gadget from the last

UQ-F gadget will instead attempt to pass through the Finish gadget and solve the level.

Clause gadget: A Clause gadget is �activated� if and only if its associated clause is satis�ed (i.e. at least

one of the literals in the associated clause is true). The level can be solved if and only if all Clause gadgets

can be activated for each possible value combination of all universally quanti�ed variables (abbreviated to

UQVC). This means that the level can be solved if and only if the given quanti�ed Boolean formula is true.

If the current gadget is a Clause gadget that is both enabled and activated, then the next gadget can be

enabled.

Finish gadget: The Finish gadget can be enabled if and only if all Clause gadgets are both enabled and

activated.

4.1.3. Framework design requirements

The gadget associated with the quanti�er with the largest scope (leftmost quanti�er in Boolean Formula)

is initially enabled (gadget pointed to by Start label in our general framework diagram), with the UQ-T

version of the gadget being enabled if it is a universal quanti�er, whilst all other gadgets are disabled. The

player can enable the �rst UQ-F gadget at any time, but doing so when the Finish gadget is disabled will

put the level into an unsolvable state (prevents the player from ever being able to pass through the Finish

gadget). Enabling the �rst UQ-F gadget also disables all Clause and Finish gadgets.

Essentially, the Finish gadget is used to maintain the ordering of the framework, by automatically making

the level unsolvable if the player attempts to open the �rst UQ-F gadget at any time except after checking

that all Clause gadgets are activated (i.e. once we reach the bottom of the framework we start again from

the top). This action of enabling the �rst UQ-F gadget begins a new �framework cycle�, with each framework

cycle testing a speci�c UQVC. Once all possible UQVCs have been tested, and assuming that the Finish

gadget has not made the level unsolvable, then the player can pass through the Finish gadget and solve the

level.

4.1.4. Framework process summary

In summary, the player will initially enable and then disable all EQ and UQ-T gadgets, either choosing

the value of the associated variable or having it automatically set to positive whilst doing so. The �rst Clause

gadget is then enabled and if it is activated, then the next Clause gadget can also be enabled. If all Clause

14



gadgets are activated then eventually they will all be sequentially enabled, after which the Finish gadget can

be enabled as well. The player can then enable the �rst UQ-F gadget (begin new framework cycle) without

putting the level into an unsolvable state, which also disables all Clause and Finish gadgets. Each time a

UQ-F gadget is enabled the outcome will alternate between setting the value of the associated variable to

negative and then enabling the next adjacent gadget, or enabling the next UQ-F gadget (both outcomes

also disable the current UQ-F gadget). This is equivalent to the next adjacent gadget being enabled if the

associated variable was positive and the next UQ-F gadget being enabled if the associated variable was

negative. If the next adjacent gadget was enabled, then the player can change the values of any variables

associated with EQ gadgets after this point in the framework as well as any subsequent UQ-T gadgets setting

the value of their associated variable to positive, after which if all Clause gadgets are still activated then

the Finish gadget will be enabled again. This process repeats 2U times, where U is the number of universal

quanti�ers in the Boolean formula. Once the player can enable the next UQ-F gadget for all UQ-F gadgets

within a single framework cycle (i.e. once all universally quanti�ed variables are negative) a bird will attempt

to pass through the Finish gadget. If the player has ensured that they only enabled the �rst UQ-F gadget

when the Finish gadget was enabled, then the bird will successfully pass through the Finish gadget and kill

a single pig to solve the level. While this process may initially seem somewhat confusing, following through

our framework using this system will con�rm that all UQVCs within the quanti�ed Boolean formula are

indeed tested.

This means that solving the level is equivalent to �nding a solution to the given quanti�ed Boolean

formula. Thus, we can show that ABED is PSPACE-hard if the required gadgets can be successfully

implemented within the game's environment and the reduction from quanti�ed Boolean Formula to level

description can be achieved in polynomial time.

4.2. Gadget Design

This section deals with the implementation and arrangement of the necessary framework gadgets for the

ABED game environment.

All Selector and AUT gates within our gadgets are initially closed except for those in the gadget associated

with the leftmost quanti�er from the Boolean Formula (pointed to by Start label), which will initially have

certain gates open corresponding to the gadget's own de�nition of being enabled, and the Finish gadget

which will be discussed later.

4.2.1. Existential Quanti�er (EQ) Gadget

The structure of the EQ gadget implementation for ABED is shown in Figure 8. This gadget is comprised

of two Selector gates (S1, S2) and four AUT gates (A1, A2, A3, A4), where all AUT gates have traverse paths

that can be shot into by the player. An EQ gadget is enabled if A1, A2, S1 and S2 are open, otherwise it is

disabled. A truth table for this gadget is shown in the Appendix (Figure C.32).

15



Figure 8: Structure of the Existential Quanti�er (EQ) gadget.

Property 4.1. An EQ gadget can be used to select one of two binary choices, positive or negative, for an

associated variable, if and only if it is enabled.

Justi�cation. AUT gates A1 and A2 are used to indicate the choice of which value to set the associated

variable to. The player �res a bird into the traverse path of A1 to indicate a positive value, and A2 to

indicate a negative value. Traversing A1 results in A1 and S2 being closed and A3 being opened, while

traversing A2 results in A2 and S1 being closed and A4 being opened. Opening either A3 or A4 sets the

value of the associated variable to either positive or negative respectively.

As the traverse path of A2 directly leads into the close path of S1, and the traverse path of A1 leads

into the close path of S2 (albeit through S1 �rst), it is impossible to have A2 open and S1 closed, S1 open

and A2 closed, or A1 open and S2 closed. The value of the associated variable can only be set to positive

by opening A3. This can only be done by traversing A1 if both it and S1 are open. Likewise, the value can

only be set to negative by opening A4, which is only possible if both A2 and S2 are open.

Thus, by combining all this information we can see that neither A3 nor A4 can be opened if the gadget

is disabled. Therefore, the player can only choose the value of the associated variable if the EQ gadget is

enabled.

Property 4.2. An EQ gadget will become disabled after selecting a value for the associated variable.

Justi�cation. As A1 and A2 are AUT gates, we know that traversing either of them will close the gate, and

thus disable the EQ gadget. Traversing either of these two gates is the only way of selecting a value for the

16



Figure 9: Structure of the Universal Quanti�er True (UQ-T) gadget.

associated variable, so the EQ gadget will clearly be disabled after doing so.

Property 4.3. The next gadget after an EQ gadget can be enabled if and only if a value has been selected

for the associated variable.

Justi�cation. The next gadget is enabled by �ring a bird into the traverse path of either A3 or A4. Opening

either A3 or A4 sets the value of the associated variable to either positive or negative respectively. Therefore,

the value for the associated variable must be selected before the next gadget can be enabled.

Essentially, traversing gate A1 or A2 is used to set the value for the associated variable to either positive

or negative respectively (i.e. setter gates). Traversing gate A3 or A4 is used to enable the next gadget once

the player has chosen the value of the associated variable (i.e. checker gates). Which of these two gates (A3

or A4) is used to achieve this is based on which value was selected for the associated variable, and traversing

either gate achieves the same end result. Gates S1 and S2 ensure that the player can only indicate a single

value for the associated variable each time the EQ gadget is enabled.

To summarise, for each existential quanti�er in the given quanti�ed Boolean formula there will be an

associated EQ gadget. If an EQ gadget is enabled then the player can use it to set the value of its associated

variable to either positive or negative, after which the EQ gadget is disabled and the next gadget is enabled.

Once the value of a variable associated with an EQ gadget has been set, it cannot be changed during this

framework cycle. The only time the value of an existentially quanti�ed variable can be changed (i.e. its

associated EQ gadget is re-enabled), is if it is within the scope of a universal quanti�er that has its value

changed (perhaps not immediately but will occur before the clauses are next checked for activation).

4.2.2. Universal Quanti�er True (UQ-T) Gadget

The structure of the UQ-T gadget implementation for ABED is shown in Figure 9. This gadget is

comprised of a single AUT gate (A1), that has a traverse path which can be shot into by the player. A

UQ-T gadget is enabled if A1 is open, otherwise it is disabled. A truth table for this gadget is shown in the

Appendix (Figure C.33).

Property 4.4. A UQ-T gadget will set the value of the associated variable to positive, if and only if it is

enabled.

17



Justi�cation. Opening A1 is the only way to enable the gadget, and doing so automatically sets the value of

the associated variable to positive.

Property 4.5. A UQ-T gadget will become disabled after the associated variable has been set to positive.

Justi�cation. Although the value for the associated variable is automatically set to positive when the gadget

is enabled, the player cannot enable any more gadgets until they traverse A1. Doing this closes A1 and thus

disables the gadget.

Property 4.6. The next gadget after a UQ-T gadget can be enabled if and only if the associated variable

has been set to positive.

Justi�cation. The next gadget is enabled by �ring a bird into the traverse path of A1. As opening A1 sets

the value of the associated variable to positive, this must clearly have already been done in order for the

player to traverse A1.

4.2.3. Universal Quanti�er False (UQ-F) Gadget

The structure of the UQ-F gadget implementation for ABED is shown in Figure 10. This gadget is

comprised of two Selector gates (S1, S2) and three AUT gates (A1, A2, A3), where A1, S1 and A3 have

traverse paths that be shot into by the player. A UQ-F gadget is enabled if A1, S1 and S2 are open,

otherwise it is disabled. A UQ-F gadget is �unlocked� if A2 is open, otherwise it is �locked�. Enabling the

�rst UQ-F gadget also disables all Clause and Finish gadgets. A truth table for this gadget is shown in the

Appendix (Figure C.34).

Property 4.7. A UQ-F gadget can be used to set the value of an associated variable to negative, if and only

if it is enabled.

Justi�cation. The only initial thing that a player can do to with a UQ-F gadget after it has been enabled is

to traverse either A1 or S1. Traversing S1 would be pointless at this stage as A2 is not yet open, so all that

would happen is that S2 would be closed. Traversing A1 instead would close both A1 and S1 but would also

open A2 and A3, as well as setting the value of the associated variable to negative.

As the traverse path of A1 directly leads into the close path of S1 it is impossible to have one open/closed

and not the other (both gates must always be in the same position). If both are closed then the player

cannot open A2 and A3. If S2 is closed then it cannot be traversed which also means the player cannot open

A2 or A3. Thus, the value of the associated variable can only be set to negative if the gadget is enabled.

Property 4.8. A UQ-F gadget will become disabled and unlocked after the associated variable has been set

to negative.

Justi�cation. The only way to set the value of the associated variable to negative is to open A3. The only

way to achieve this is to traverse A1, which closes both A1 and S1 as well as opening A2, causing the UQ-F

gadget to be both disabled and unlocked.

18



Figure 10: Structure of the Universal Quanti�er False (UQ-F) gadget.

Property 4.9. The next adjacent gadget after a UQ-F gadget can be enabled if and only if the associated

variable has been set to negative.

Justi�cation. Traversing A3 is the only way to enable the next adjacent gadget. As opening A3 sets the

value of the associated variable to negative, this must clearly have already been done �rst in order for the

player to traverse A3.

Property 4.10. The next UQ-F gadget after a UQ-F gadget can be enabled if and only if the (current)

UQ-F gadget is both enabled and unlocked.

Justi�cation. The only way to enable the next UQ-F gadget is to traverse A2 via S1. After the player has

just unlocked a UQ-F gadget they cannot traverse A2 as S1 has been closed. Instead they must go back

through the framework again, starting from the next adjacent gadget, which can be enabled by traversing A3.

Once the UQ-F gadget is enabled again the player can then traverse S1 (as A2 is now open) which enables

the next UQ-F gadget (or attempts to pass through the Finish gadget). Traversing A1 instead would just

result in the same outcome as the �rst time the gadget was enabled and so would be a redundant action.

Property 4.11. A UQ-F gadget will become disabled and locked after the next UQ-F gadget is enabled.

Justi�cation. The only way to enable the next UQ-F gadget is to traverse S1. Doing so clearly results in S2

and A2 being closed in the process (disables and locks the gadget). The player cannot re-open A2 as S2 is

now closed, so the gadget will remain locked until it is re-enabled.

19



Figure 11: Structure of the Clause gadget.

Essentially, traversing gate A1 is used to set the value of the associated variable to negative, while

traversing gate S1 is used enable the next UQ-F gadget. The speci�c wiring arrangement of these gates,

along with the gate S2, ensures that the player can only select one of these two options each time the UQ-F

gadget is enabled. Gate A2 ensures that the player can only enable the next UQ-F gadget every other time

the current UQ-F gadget is enabled. Traversing gate A3 is used to enable the next adjacent gadget, if the

player has set the value of the associated variable to negative (i.e. traversed A1 instead of S1).

To summarise, for each universal quanti�er in the given quanti�ed Boolean formula, there will be both

an associated UQ-T gadget and UQ-F gadget. Each time the UQ-T gadget is enabled there is only one

possible outcome: the value of its associated variable is set to positive, the UQ-T gadget is disabled and the

next gadget is enabled. Each time the UQ-F gadget is enabled there are two possible outcomes: (A) the

value of its associated variable is set to negative, the UQ-F gadget is disabled and the next adjacent gadget

is enabled, or (B) the UQ-F gadget is disabled and the next UQ-F gadget is enabled (or attempt to pass

through the Finish gadget if this is the last UQ-F gadget). The player can always choose outcome A, but

can only choose outcome B if outcome A was chosen the last time the UQ-F gadget was enabled. However,

choosing outcome A when outcome B is possible will never yield a better result, and will only lead to repeat

checks of already tested UQVCs. Assuming that the player always selects outcome B whenever they can,

each UQ-F gadget will alternate between outcomes A and B each time it is enabled.

4.2.4. Clause Gadget

The structure of the Clause gadget implementation for ABED is shown in Figure 11. This gadget is

comprised of six Selector gates (S1, S2, S3, S4, S5, S6), where S1, S2 and S3 have traverse paths that can be

20



shot into by the player. Selector gates S1, S2 and S3 must always be in the same position (closed or open).

A Clause gadget is enabled if S1, S2 and S3 are all open, and is disabled if S1, S2 and S3 are all closed. Each

Clause gadget is associated with a particular clause from the quanti�ed Boolean formula, and each of the

Selector gates S4, S5 and S6 is associated with a speci�c literal from that clause. The �rst Clause gadget is

enabled by the last Quanti�er gadget and the Finish gadget is enabled by the last Clause gadget. A truth

table for this gadget is shown in the Appendix (Figure C.35).

When the value of a variable is modi�ed using a Quanti�er gadget (exit paths labelled as �modify Clause

gadgets�), the bird on this path will fall down tunnels which lead to the �rst Clause gadget that contains

the variable associated with it. If the value of the variable was set to positive then the bird opens any

of S4, S5 or S6 that are associated with the variable's positive literal, whilst closing any of those that are

associated with the variable's negative literal (vice versa if the value of the variable was set to negative).

This bird then travels into the next Clause gadget that contains this variable, and the process repeats until

all applicable Clause gadgets have been visited. Therefore each Clause gadget represents a chosen clause

from our quanti�ed Boolean formula, and Selector gates S4, S5 and S6 are either open or closed depending

on whether their associated literal is true or not. Therefore, we can say that a Clause gadget is activated if

and only if any of S4, S5 or S6 are open.

Property 4.12. The next gadget after a Clause gadget can be enabled if and only if the Clause gadget is

enabled and activated.

Justi�cation. The next gadget after a Clause gadget is enabled by �ring a bird into the traverse path of S1,

S2 or S3. This shot will only enable the next gadget if S4, S5 or S6 is open respectively. This means that at

least one of S4, S5 or S6 must be open (i.e. the Clause gadget must be activated) in order for the player to

enable the next gadget. This obviously cannot be performed if the Clause gadget is disabled.

To summarise, a player can only enable the next Clause gadget (or enable the Finish gadget if this is the

last Clause gadget) if at least one of the literals within the current Clause gadget is true, and thus the clause

is activated. Enabling the Finish gadget can therefore only be achieved if all Clause gadgets are activated by

the current combination of variable values (i.e. all clauses in the quanti�ed Boolean formula are satis�ed).

4.2.5. Finish Gadget

The structure of the Finish gadget implementation for ABED is shown in Figure 12. This gadget is

comprised of a Selector gate (S1) and an AUT gate (A1), but the player cannot directly �re into either of

them. Traversing S1 can also be referred to as �passing through� the Finish gadget, and results in the level

being solved. The Finish gadget can exist in one of three states: enabled, disabled and unsolvable. The

Finish gadget is enabled if A1 is open and S1 is open, disabled if A1 is closed and S1 is open, and unsolvable

if S1 is closed. The Finish gadget is initially disabled (A1 is closed and S1 is open). A truth table for this

gadget is shown in the Appendix (Figure C.36).

21



Figure 12: Structure of the Finish gadget.

Property 4.13. The player can enable the �rst UQ-F gadget without making the level unsolvable, if and

only if the Finish gadget is enabled.

Justi�cation. The three states that a Finish gadget can be in are all mutually exclusive. Also as there is no

way of opening S1, if the Finish gadget is ever in the unsolvable state then it can never be taken out of this

state. Therefore, as traversing S1 is the only way to solve the level, if the Finish gadget is ever unsolvable

then the level is unsolvable. While closing S1 does not immediately satisfy the loss condition for the level,

and allows the player to continue to make further shots, the player can no longer reach the win condition

so their loss is guaranteed (eventually the player will run out of birds). We can also observe that the Finish

gadget becomes disabled if and only if it is enabled and the �rst UQ-F gadget is enabled, and that the Finish

gadget becomes unsolvable if and only if it is disabled and the �rst UQ-F gadget is enabled. Therefore, the

only way for us to enable the �rst UQ-F gadget without making the level unsolvable is if the Finish gadget

is enabled.

Essentially, as the Finish gadget can only be enabled if the last (and by extension all) Clause gadget(s)

are enabled and activated, coupled with the fact that opening the �rst UQ-F gadget disables all Clause

and Finish gadgets, we can ensure that the �rst UQ-F gadget can only be enabled directly after the Clause

gadgets have been checked for activation. Also, as the only way to solve the level to traverse S1, which can

only happen from the last UQ-F gadget, we can guarantee that all UQVCs are tested before the level can

be solved.

4.3. Level Construction

This section deals with the reduction process from any given quanti�ed 3-CNF Boolean formula to an

equivalent ABED level description, using our previously described framework and gadgets. As Angry Birds

is a game that relies heavily on physics simulations to resolve player actions, the relative positions of the

gadgets is extremely important. Elements within the game are bound by the physics of their environment

and the only immediate control the player has is with regard to the shots they make. For this reason, it is

necessary to con�rm that the gadgets described can be successfully arranged throughout the level space.

22



Lemma 4.14. Any given TQBF problem can be reduced to an ABED level description in polynomial time.

Proof. As each of the necessary gadgets can be created using a constant amount of space and elements, they

can also be described in polynomial time. Consequently, the only remaining requirement is that all gadgets

can be successfully arranged throughout the level in polynomial time, relative to the size of the quanti�ed

3-CNF Boolean formula. As the number of gadgets required is clearly polynomial, it su�ces to describe a

polynomial time method for determining the location of each gadget, as well as the level's width, height,

slingshot position and number of birds.

Whilst the exact calculations for determining gadget positions for a given quanti�ed Boolean formula can

be determined, they are exceptionally long and somewhat irrelevant to this proof. Instead, we will simply

show that the tunnels out from each gadget can connect to their appropriate destinations in a polynomial

amount of space, and can therefore also be de�ned in polynomial time. The number of tunnels out of each

gadget type is constant, and the number of each gadget type is polynomial. Because of this, there are only

a polynomial number of tunnels to consider and each of these can always be connected to their appropriate

destination gadget using a polynomial amount of space. This means that the entire framework must also

be polynomial in size, and can therefore be described in polynomial time. We also know that there are a

polynomial number of entrance tunnels to these gadgets that the player can �re into, determined based on

the number of quanti�er and clause gadgets. Each of these entrance tunnels can simply start above the

framework (facing downwards) and then lead into the required gadget entrances. This allows us to de�ne

the total width (WT ) of all entrance tunnels that the player can �re into, which is also polynomial in size.

Although the speed at which a bird can be �red from the slingshot is bounded (less than or equal to a

maximum velocity vM ), we can still ensure that all gadgets are reachable from the slingshot by placing them

lower in the level. As there is no air resistance, the trajectory of a �red bird follows a simple parabolic curve

for projectile motion, y = x tan(φ) − g
2v20 cos2(φ)

x2, where v0 is the initial velocity of the �red bird, φ is the

initial angle with which the bird was �red, and g is the gravitational force of the level. While it is highly

likely that Angry Birds has a maximum speed that an element could possess, this is not addressed by the

formula given (i.e. we assume a theoretical worst case scenario of no terminal velocity). This means that in

order for us to ensure that all gadgets are reachable, they must be placed at a distance below the slingshot

equal to or greater than −WT + g
v2M
W 2
T . We can also use the same formula to calculate the maximum height

that a bird �red from the slingshot can reach,
v2M
2g . Using this we can set the position of the slingshot to

(0,
−v2M
2g ) and place all entrance tunnels that the player can �re into the required distance below this in a

horizontal alignment against the left side of the level. In addition, we need to guarantee that there are

enough release points available to allow a bird to be shot into any entrance tunnel for any gadget. To ensure

this, we simply move everything constructed so far WT pixels to the right. Lastly, the number of birds that

the player has is equal to (C + 2E + 3U)2U (although often this many are not needed), where C is the

number of clauses, E is the number of existential quanti�ers, and U is the number of universal quanti�ers,

within the given quanti�ed Boolean formula.

23



An example diagram of a fully constructed structure, using the same quanti�ed Boolean formula as in

Figure 7, is shown in the Appendix (Figure A.27).

As we have constructed the necessary gadgets and can position them within the game's environment in

polynomial time, the problem of solving levels for ABED is PSPACE-hard.

Theorem 4.15. The problem of solving levels for ABED is PSPACE-hard.

4.4. Winning Strategy (Example)

We now describe an example of a winning strategy for solving an ABED level description that has been

reduced from the same quanti�ed Boolean formula as in Figure 7. For this level description, one strategy

that would solve the level would be to set the value of x to positive at the start (after which the EQ gadget

associated with x is never enabled again), and set the value of z to be the same as y whenever the EQ gadget

associated with z is enabled. The framework will then be cycled four times, for each combination of values

for y and w, giving the following variable value combinations when the Clause gadgets are enabled:

• Framework cycle #1: x = 1, y = 1, z = 1, w = 1

• Framework cycle #2: x = 1, y = 1, z = 1, w = 0

• Framework cycle #3: x = 1, y = 0, z = 0, w = 1

• Framework cycle #4: x = 1, y = 0, z = 0, w = 0

By comparing these variable values against our quanti�ed Boolean formula, we can see that all clauses

are satis�ed for each framework cycle, allowing us to enable the Finish gadget and begin the next framework

cycle. Essentially, this particular strategy ensures that all Clause gadgets for the given quanti�ed Boolean

formula are activated for all UQVCs. As both universally quanti�ed variables (y and w) are set to negative

on the fourth framework cycle, the �fth framework cycle will allow us to pass through the Finish gadget and

solve the level. A table detailing the 36 shots needed to solve this level is shown in the Appendix (Figure

B.31).

4.5. In PSPACE

As we have already shown that ABED is PSPACE-hard, the only remaining requirement for completeness

is that it also be in PSPACE. The problem of solving levels for ABED can be de�ned as within PSPACE if

it is possible to solve any given level in polynomial space relative to the size of the level's description, and

that there are a �nite number of states and strategies for solving any given level.

Lemma 4.16. Any given ABED level can be solved in polynomial space.

Proof. All game elements can be described using a polynomial amount of memory (e.g. position, velocity,

size, etc.), the size of a level does not increase (pre-de�ned out of bounds limits), no additional elements

24



are added to a level whilst playing (only removed), and every game element behaves deterministically based

on a function of the player's actions. Because of this, the current state of a level can always be stored in

polynomial space. Thus, the state space of a level can be searched non-deterministically for any possible

solutions. This means that the problem is in NPSPACE. We can then use Savitch's theorem [37] that

NPSPACE = PSPACE to conclude that the problem of solving levels for ABED is indeed in PSPACE.

Lemma 4.17. There are a �nite number of states and strategies for any given ABED level.

Proof. The state of a level is de�ned based on the current attribute values of all the elements within it. These

attribute values are all de�ned as rational numbers that each take up a �nite amount of memory. Therefore,

it must also be possible to de�ne the current state of any given level in a �nite amount of memory. Thus,

the total number of states for any given level is �nite. As the number of shots and release points for any

given level is polynomial, relative to the size of the level's description, the number of possible strategies for

a level is also �nite.

Thus, as ABED is both PSPACE-hard and in PSPACE, the problem of solving levels for ABED is

PSPACE-complete.

Theorem 4.18. The problem of solving levels for ABED is PSPACE-complete.

5. PSAPCE-Hardness of ABPS (polynomial and stochastic)

5.1. Framework

Whilst the problem of solving levels for ABED has been proven PSPACE-complete, it is also possible to

show that solving levels for ABPS is PSPACE-hard. This version of Angry Birds no longer allows for an

exponential number of birds, but does feature a stochastic game engine. Our proof of PSPACE-hardness for

ABPS is based on the same TQBF problem as for ABED, and uses a very similar framework, see Figure 13

(also uses the same example quanti�ed Boolean formula from Figure 7).

The EQ and Clause gadgets from the ABED proof remain the same, except that all Clause gadgets are

initially set up as if all universally quanti�ed variables are negative. We no longer require UQ-F or Finish

gadgets, and UQ-T gadgets are replaced by a new Universal Quanti�er Random (UQ-R) gadget. Each

UQ-R gadget has a non-zero and non-certain probability of setting the value of its associated variable to

positive when it is enabled. If all Clause gadgets are activated after the player has selected a value for each

existentially quanti�ed variable, and the value for each universally quanti�ed variable has been (randomly)

either set to positive or remains negative, then the player will be able to kill a single pig within the level

which replaces the Finish gadget. We also only need as many birds as there are variables and clauses within

the given quanti�ed Boolean formula (i.e. the number of birds needed is polynomial).

Essentially, we are no longer testing out every possible UQVC, but are testing a single possible UQVC

that is selected at random. As our formal decision problem posed at the beginning of this paper was to

25



Figure 13: General framework diagram for PSPACE-hardness (ABPS).

determine if there exists a strategy that ALWAYS solves a given level, these two testing approaches are

equivalent (as long as the probability of selecting each possible UQVC is greater than zero).

5.2. Universal Quanti�er Random (UQ-R) Gadget

The structure of the UQ-R gadget implementation for ABPS is shown in Figure 14. This gadget is

comprised of an AUT gate (A1) and a Random gate (R1), where (A1) has a traverse path which can be shot

into by the player. A UQ-R gadget is enabled if A1 is open , otherwise it is disabled. This gadget behaves

in a similar manner to the UQ-T gadget from our ABED proof, except that instead of always setting the

value of the associated Boolean variable to positive it has a non-zero and non-certain probability of doing

so. A truth table for this gadget is shown in the Appendix (Figure C.37).

Property 5.1. A UQ-R gadget has a non-zero and non-certain probability of setting the value of an asso-

ciated variable to positive, if and only if it is enabled.

Justi�cation. Opening A1 is the only way to enable the gadget, and doing this causes a bird to also enter

R1. This bird then has a non-zero probability of leaving R1 through the left exit, but also has a non-zero

probability of not leaving R1 (either by being trapped in the right exit or by remaining on the point inside

the gate). If the bird leaves R1 through the left exit then the value of the associated variable is set to

positive.

Properties and justi�cations for how the UQ-R gadget is disabled and how the next gadget is enabled

can be easily generalised from Section 4.2.2.

Essentially, as all Clause gadgets are initially con�gured as if all universally quanti�ed variables are

negative, when the Clause gadgets are checked for activation there is a non-zero probability that each

26



Figure 14: Structure of the Universal Quanti�er Random (UQ-R) gadget.

universally quanti�ed variable will remain negative, but also a non-zero probability that its value will have

been changed to positive (i.e. each UQVC has a chance greater than zero of being selected as the outcome).

As the framework for this proof is very similar to that for ABED, the gadgets can be arranged using

roughly the same process as described in Section 4.3, except that UQ-T gadgets are replaced by UQ-R

gadgets, and no UQ-F or Finish gadgets are necessary. An example diagram of a fully constructed structure,

using the same quanti�ed Boolean formula as in Figure 13, is shown in the Appendix (Figure A.28).

As we have constructed the necessary gadgets and can position them within the game's environment in

polynomial time, the problem of solving levels for ABPS is PSPACE-hard.

Theorem 5.2. The problem of solving levels for ABPS is PSPACE-hard.

5.3. Winning Strategy (Example)

The same winning strategy that was used in Section 4.4 (x = 1, z = y) can also be used here for the same

quanti�ed Boolean formula, see Figure 13. In this case, however, the framework does not need to be cycled

multiple times to test each UQVC, but instead one of the four possible UQVCs will be randomly selected.

As all clauses remain satis�ed for our strategy regardless of which UQVC is selected, we can guarantee that

the player will always be able to kill the pig and thus solve the level.

6. NP-Hardness of ABPD (polynomial and deterministic)

6.1. Framework

By using a very similar framework to those used in the last two PSPACE-hard proofs, we can also

show that solving levels for ABPD is NP-hard. While this is the �weakest� complexity class that is proven

in this paper, this version of Angry birds allows for only a polynomial number of birds and features a

deterministic physics engine. Our proof of NP-hardness reduces from the NP-complete problem 3-SAT,

which involves deciding whether a given 3-CNF Boolean formula is satis�able. The framework we use

for this proof is essentially a reduced version of that used for the TQBF problem, see Figure 15, and

27



Figure 15: General framework diagram for NP-hardness (ABPD).

is similar to that used for many past platformer games [1, 17, 31]. Figure 15 uses the Boolean formula

(x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z) as an example.

Essentially any 3-CNF Boolean formula can be represented using our TQBF framework by simply making

all variables existentially quanti�ed. This removes the need for any UQ-F, UQ-T or Finish gadgets, relying

only on the EQ and Clause gadgets (i.e. for each variable in the Boolean formula there is an associated

EQ gadget and for each clause in the Boolean formula there is an associated Clause gadget). If all Clause

gadgets are activated after the player has selected a value for each variable, then the player will be able to

kill a single pig within the level that replaces the Finish gadget. We also only need as many birds as there

are variables and clauses within the given Boolean formula.

As the framework for this proof is very similar to that of ABED, the gadgets can be arranged using

roughly the same process as described in Section 4.3, except that no UQ-F, UQ-T or Finish gadgets are

necessary. An example diagram of a fully constructed structure, using the same Boolean formula as in

Figure 15, is shown in the Appendix (Figure A.29).

As we have constructed the necessary gadgets (although no new gadgets were added for this proof) and

can position them within the game's environment in polynomial time, the problem of solving levels for ABPD

is NP-hard.

Theorem 6.1. The problem of solving levels for ABPD is NP-hard.

We should point out that an NP-hard proof for a version of Angry Birds which had a similar environment

to ABPD was previously presented by us in [38]. However, this proof also used �breakable blocks� in addition

to the other game elements mentioned in our requirements. This proof was arguably simpler than the one

which we present here, but due to the fact that it required additional game elements, we treat this new proof

as an improved alternative to that presented in [38].

28



6.2. Winning Strategy (Example)

We now describe an example of a winning strategy for solving an ABPD level description that has been

reduced from the same quanti�ed Boolean formula as in Figure 15. For this level description, one strategy

that would solve the level would be to set the value of x to positive, the value of y to positive, and the value

of z to negative. This will ensure that all Clause gadgets are activated, allowing us to kill the pig and solve

the level.

7. EXPTIME-hardness of ABES (exponential and stochastic)

7.1. EXPTIME-Complete Original Game

To show that solving levels for ABES is EXPTIME-hard we will reduce from a known EXPTIME-

complete decision problem. For our proof we will use the problem of determining whether a player can force

a victory for the game G2, as shown in [39]. G2 is a game that is played between two people, with each

player attempting to win the game before the other player does. A full and formal de�nition of G2 can be

found in [39], but we provide here a simpli�ed explanation of how it is played.

The game is setup as follows. Each player is given a separate 12-DNF Boolean formula which they are

attempting to make true. Each of the variables that are used in these Boolean formulas are assigned to

either player 1 or player 2. The initial values of the variables are also set to either positive or negative.

The game is played as follows. Each player takes turns making a move (starting with player 1), where

they can change the value of at most one variable assigned to them (changing the value of no variables is

referred to as �passing�). The �rst player to have their Boolean formula �true� after making a move wins

the game. This victory condition is equivalent to saying that whichever player's Boolean formula is satis�ed

�rst wins, but if both players' Boolean formulas are satis�ed simultaneously then the player that made the

most recent move wins.

If, after the game has been setup, a player can guarantee that they will win regardless of the other player's

actions, then that player can force a victory, otherwise they cannot. Determining whether player 1 can force

a victory is the known EXPTIME-complete decision problem that we will be using for our proof.

G2 Formal Decision Problem

Instance: 12-DNF Boolean formula for each player, variable assignment, initial variable values.

Question: Can player 1 force a victory?

From this point on we will refer to player 1 as the �player� and player 2 as the �opponent�.

While many classical two-player games such as Chess, Go and Checkers contain the mechanics necessary

to mimic games such as G2, Angry Birds does not on �rst glance appear to be a suitable choice. Angry Birds

is a single-player game and so does not inherently feature an opponent, in the traditional sense, against which

to play. However, we can instead use the stochasticity of the physics engine as the opponent we will be facing.

This stochasticity allows us to create situations where the player is uncertain about the exact outcome of

29



shots that they make. By utilising this element of uncertainty in shot outcomes, we can create a �random�

opponent, that will make random moves after each of the player's moves. Even though an opponent that

just makes random moves may seem very easy to beat, the complexity of determining whether the player can

force a victory for a given G2 instance is the same when facing both an opponent that plays optimally and

one that plays randomly, as it is always possible that the random opponent will, by pure chance, actually

play optimally (i.e. the player must assume Murphy's Law). Even if the player can beat a random opponent

many times for a particular G2 instance, if there exists some small probability that the player will not win

then they cannot force a victory (i.e. guaranteeing victory against an opponent that makes random moves is

the same as against an opponent that plays perfectly). Exactly how this simulation of a random opponent

by our stochastic physics engine is achieved will be discussed in greater detail later. All that needs to be

understood now is that the decision problem we are considering involves determining whether the player can

force a victory (i.e. guarantee that they can always solve the level) without knowing exactly how the game's

physics will respond to their actions.

7.2. Framework

For our proof of EXPTIME-hardness we describe a method of combining several new types of gadget

to create an ABES representation for any given setup of the game G2. A framework diagram showing how

these gadgets connect within the level space is shown in Figure 16, which uses the example Boolean formulas

(x∧¬y ∧ z)∨ (¬x∧ y ∧w) for the player and (x∧ y ∧¬z)∨ (¬x∧ y ∧¬w) for the opponent. For each Clause

in either the player's or opponent's Boolean formula there is an associated Clause gadget. The framework

also contains an Ordering, Random, Choice and Result gadget, the purpose of which will be discussed later.

As there is no traditional opponent to make moves for themselves, we must design the level such that

the player is forced to make a move for the opponent after they have made their own move. The player �rst

makes their move by either changing the value of a variable assigned to them or by passing. The player can

then check whether their own Boolean formula is satis�ed, although this is optional and not enforced by the

level's design. The player is then forced to randomly change the value of a variable assigned to the opponent

(passing is also a possible outcome) and check whether the opponent's Boolean formula is satis�ed, before

they are allowed to make another move for themselves.

7.2.1. Gadget design requirements

The Ordering gadget ensures that the correct order of actions is followed by the player. Essentially, all

actions must be repeatedly performed in the following order:

1. The player makes their move (can e�ectively skip this step by passing).

2. The player checks whether their Boolean formula is satis�ed (can skip this step).

3. The player makes a random move for the opponent (cannot skip but passing may occur as a random

possibility).

30



Figure 16: General framework diagram for EXPTIME-hardness.

4. The player checks whether the opponent's Boolean formula is satis�ed (cannot skip this step).

The Choice gadget allows the player to make a single choice about which of their assigned variables will

change in value during their move. The player should also have the option to pass if they do not wish to

change the value of a variable. When a bird enters the Choice gadget via the Ordering gadget, the location

at which it will exit is based on this choice made by the player. Depending on where the bird exits, the value

of a single variable assigned to the player will either be changed or kept the same (pass).

The Random gadget makes a random choice between multiple options, based on the stochasticity of the

game engine. When a bird enters the Random gadget there are several possible locations where it can exit,

each of which has a probability of occurring that is greater than zero. Depending on where the bird exits,

the value of a single variable assigned to the opponent will either be changed or kept the same (pass).

Each Clause gadget represents a speci�c clause from either the player's or opponent's Boolean formula,

and is �activated� if its associated clause is satis�ed (i.e. all literals within the associated clause are true).

This means that checking if either the player's or opponent's Boolean formula is satis�ed, is equivalent to

checking if any of their associated Clause gadgets are activated. If any of their associated Clause gadgets are

activated during this checking step, then a bird will travel into the Result gadget. Notions o� ��rst�, �last�,

31



�next� and �previous� Clause gadget are the same as for Section 4.1.

The Result gadget is used to decide whether the level has been won or lost, depending on if the player's

or opponent's Boolean formula is satis�ed �rst after they have made a move. If the player's Boolean formula

is satis�ed �rst, then the player can travel to the Result gadget from one of their activated Clause gadgets,

allowing them to �pass through� the Result gadget and win the level. If the opponent's Boolean formula

is satis�ed �rst, then the player will be forced to travel to the Result gadget from one of the opponent's

activated Clause gadgets, which will then close the Result gadget and prevent the player from ever being

able to pass through it in the future (i.e. makes the level unsolvable). Essentially, the location and outcome

of the �rst bird to enter the Result gadget depends on whether it came from one of the player's or opponent's

Clause gadgets.

7.2.2. Framework design requirements

The player �res a bird into the Ordering gadget to make the majority of actions, as well as into the

Choice gadget to dictate which of their assigned variables will change in value for their next move. For our

general framework diagram (Figure 16), an arrow into the left side of a Clause gadget indicates that the

value of a variable is being changed, while an arrow into the right side indicates that the Clause gadget is

being checked for activation (i.e. check if associated clause is satis�ed). The arrow into the left side of the

Result gadget signi�es that the level is lost (unsolvable), while the arrow into the right side signi�es that the

level is won (solved). Lastly, the arrow into the left side of the Choice gadget carries out the player's chosen

move, while the arrow into the right side allows the player to specify the move they wish to make next.

This means that solving the level is equivalent to winning a game of G2 (against a random opponent).

Thus, we can show that ABES is EXPTIME-hard if the required gadgets can be successfully implemented

within the game's environment and the reduction from G2 setup to level description can be achieved in

polynomial time.

7.3. EXPTIME-Hardness

This section deals with the implementation and arrangement of the necessary framework gadgets for the

ABES game environment, as well as the reduction process from any given setup of G2 to an equivalent ABES

level description.

7.3.1. Ordering Gadget

The purpose of the Ordering gadget is to ensure that all actions are carried out in the correct order. The

structure of the Ordering gadget implementation for ABES is shown in Figure 17. This gadget is comprised

of two Selector gates (S1, S2) and an AUT gate (A1). A1 and S1 are initially open while S2 is initially closed.

There are four entry points to the Ordering gadget (SOI , SPI , COI , CPI) and four corresponding exit points

(SOO, SPO, COO, CPO). A bird which enters the Ordering gadget at a given entry point will either leave

at the corresponding exit point or fail to leave the Ordering gadget, based on whether certain gates within

32



Figure 17: Model of the Ordering gadget

used.
Figure 18: DFSM for actions performed in Ordering gadget.

the Ordering gadget are open or closed. Each exit point leads to the following gadgets/actions: SPO to the

Choice gadget (Player makes their move to Set the truth value for one of their assigned variables), SOO to

the Random gadget (make a random move for the Opponent to Set the truth value for one of their assigned

variables), CPO to the Player's Clause gadgets (check whether the player's Boolean formula is satis�ed),

and COO to the Opponent's Clause gadgets (check whether the opponent's Boolean formula is satis�ed).

A deterministic �nite state machine (DFSM) showing the relations between gate states, entry points and

exit points is shown in Figure 18 (note that the �rst value given for each arrow is the entry point, while the

second value is the exit point; exit points marked as �-� indicate that the bird did not leave the Ordering

gadget). A truth table for this gadget is shown in the Appendix (Figure C.38).

Because both the player and opponent can pass as a possible move, and the player does not have to check

whether their Boolean formula is satis�ed after making their move, we can ensure that the correct order of

actions is followed if the following two properties hold.

Property 7.1. If the player makes a move, they must make a random move for the opponent and then check

whether the opponent's Boolean formula is satis�ed, before they can make another move.

Justi�cation. Using the DFSM in Figure 18, we can see that after a bird exits via SPO, a bird must exit via

SOO followed by a bird exiting via COO, before a bird can exit via SPO again. Note that it is also possible

for a bird to exit via SOO and/or COO multiple times before a bird exits via SPO again, but as both the

player and opponent have passing as a possible move, there is no issue with this (any duplicate opponent

moves can simply be treated as the player passing, and as the opponent can potentially pass their move as

a random outcome we only need to check if the opponent's Boolean formula is satis�ed if the player didn't

pass on their previous move).

Property 7.2. If the player makes a random move for the opponent, they must check whether the opponent's

33



Figure 19: Example model of a Choice gadget with four possible outcomes.

Boolean formula is satis�ed before they can check if the player's Boolean formula is satis�ed.

Justi�cation. Again using the DFSM in Figure 18, we can see that after a bird exits via SOO a bird must

also exit via COO, before a bird can exit via CPO. This essentially ensures that the player is only able to

check if their Boolean formula is satis�ed between making their own move and making a random move for

the opponent.

7.3.2. Choice Gadget

The purpose of the Choice gadget is to allow the player to make a decision about which of their assigned

variables will change in value. An example of a Choice gadget implementation for ABES with four possible

exit points is shown in Figure 19. This gadget is comprised of a sequence of AUT gates (A1, A2, A3,...,

A(2Vp), where Vp is the number of variables assigned to the player). Each AUT gate is associated with a

particular value for one of the player's variables (i.e. a literal). The player can directly open any AUT gate

within the Choice gadget at any time, and a bird attempts to traverse this sequence of AUT gates whenever

it leaves the Ordering gadget from exit SPO.

Property 7.3. The Choice gadget can be used to indicate which of the player's variables will change in value

(i.e. which literal to make true).

Justi�cation. The �rst AUT gate in the sequence that is closed represents the literal that the player wishes

to make true. For the example shown, the player wished to choose the literal represented by the third

AUT gate, so has opened all the other AUT gates before it. Essentially, when a bird attempts to traverse

this sequence of AUT gates, the �rst AUT gate that it is unable to traverse represents the selection of its

associated literal to make true.

Property 7.4. A bird which enters the Choice gadget from exit B of the Ordering gadget, will exit the

Choice gadget at a location unique to the literal selected by the player.

Justi�cation. Whilst, the player can open any number of AUT gates within the Choice gadget, they can

only be traversed from exit SPO of the Ordering gadget. If an AUT gate is open then a bird can traverse it

34



(closing the AUT gate in the process) and then attempt to traverse the next AUT gate in the sequence. The

�rst AUT gate in this sequence that is closed will prevent the bird from being able to traverse it, meaning

it will instead leave the AUT gate at exit TR. The bird will then travel into the Clause gadgets and make

the desired change, based on the literal associated with this closed AUT gate. The TR exit for each AUT

gate in this gadget essentially represents a unique literal that the player can make true during their move,

and so the location where a bird exits the gadget is unique to the chosen literal.

In summary, the player can determine the exit point for any bird that enters the Choice gadget from

exit SPO of the Ordering gadget, by opening all AUT gates before the desired exit point. Each exit point

from the Choice gadget then sets the literal associated with its AUT gate to true for both the player's and

opponent's Clause gadgets.

Property 7.5. The player can pass if they do not wish to change the value of any of their assigned variables.

Justi�cation. A pass can be made either by selecting a literal that is already true, or by opening all AUT

gates in the Choice gadget.

Property 7.6. The width and height of the Choice gadget, as well as the number of game elements it

contains, is polynomial in the number of variables assigned to the player.

Justi�cation. Let AW , AH and AE be constants representing the width, height and number of elements

(respectively) for an AUT gate. The width, height and number of elements for a Choice gadget is therefore

bounded by the polynomial expressions (2Vp)AW , (2Vp)AH and (2Vp)AE respectively.

7.3.3. Random Gadget

The purpose of the Random gadget is to randomly select one of several options, each of which is associated

with a particular value for one of the opponent's variables (i.e. the Random gadget uses the inherent

uncertainty in the outcome of collisions to make a random move for the opponent). Each of these options

should have a probability greater than zero of occurring, and the player cannot be allowed to in�uence or

know the outcome of the Random gadget in advance. An example of a Random gadget implementation for

ABES with four possible exit points is shown in Figure 20. This gadget is comprised of multiple Random

gates (R1, R2, R3,..., R(2Vo−1)), where Vo is the number of variables assigned to the opponent, that are

arranged in a Binary tree fashion. The �rst row has one Random gate, then the next two, then four, and so

on. A bird enters at the top of this tree of Random gates whenever it leaves the Ordering gadget from exit

SOO.

Property 7.7. The Random gadget can be used to randomly select which of the opponent's variables will

change in value (i.e. which literal to make true) or pass, using the stochasticity of the game engine.

Justi�cation. As any bird which enters a Random gate has a probability greater than zero of leaving the

Random gate at either exit point, then regardless of how many Random gates the bird interacts with inside

35



Figure 20: Example model of a Random gadget with four possible outcomes.

our Random gadget, the probability of the bird leaving the Random gadget at any speci�c exit point is also

greater than zero (i.e. by combining together multiple Random gates, it is possible to create a Random

gadget that can select between any number of di�erent options). Note that if the bird remains at any point

within the Random gadget, then this can simply be treated as a pass. Each exit point from the Random

gadget is associated with a particular literal for one of the opponent's variables. The bird will then travel

into the Clause gadgets and make the desired change, based on the literal associated with the exit point.

If the literal associated with the bird's exit point is already true then nothing will change (treated as a

pass).

In summary, any bird that enters the Random gadget from exit SOO of the Ordering gadget has a

probability greater than zero of leaving the gadget at any speci�c exit point. Each exit point from the

Random gadget then sets the literal associated with it to true for both the player's and opponent's Clause

gadgets.

Property 7.8. The width and height of the Random gadget, as well as the number of game elements it

contains, is polynomial in the number of variables assigned to the opponent.

Justi�cation. Let RW , RH and RE be constants representing the width, height and number of elements

(respectively) for a Random gate. The width, height and number of elements for a Random gadget is

therefore bounded by the polynomial expressions (2Vo−1)RW , (2Vo−1)RH and (2Vo−1)RE respectively.

7.3.4. Clause Gadget

The purpose of the Clause gadget is to represent a single associated clause from either the player's or

opponent's Boolean formula, and is activated if the clause is satis�ed. An example of a Clause gadget

implementation for ABES is shown in Figure 21. This gadget is comprised of a sequence of Selector gates

(S1, S2, S3,..., SL), where L is the number of literals within its associated clause (maximum of 12). Each of

36



Figure 21: Example model of a Clause gadget for a Clause with

three literals.
Figure 22: Example tunnel connection diagram for two

Clause gadgets with two literals each.

these Selector gates represents a literal from the associated Clause, and is either open or closed depending

on whether their associated literal is true or not. Therefore, we can say that a Clause gadget is activated

if and only if all Selector gates within it are open. An example truth table for this gadget is shown in the

Appendix (Figure C.39).

Figure 22 also provides an example of how multiple Clause gadgets can be combined to represent a

complete Boolean formula, in this case for the Boolean formula (X ∧ Y ) ∨ (¬X ∧ ¬Y ) (i.e. two Clause

gadgets which each contain two Selector gates). For this example, the value of X is negative whilst the value

of Y is positive. There are �ve points of entry to the �rst Clause gadget and the purpose of these di�erent

entry points is as follows (starting from the leftmost entry point): check whether any Clause gadgets are

activated (if so then bird travels to the Result gadget), set the value of X to positive, set the value of X to

negative, set the value of Y to positive, set the value of Y to negative. This arrangement ensures that we

can check if any number of Clause gadgets are activated using a single bird.

Whenever the Random or Choice gadget is used to set the value of a variable (exit paths labelled as

�modify Clause gadgets�), a bird will travel through all the Clause gadgets that contain that variable, for

both the player and opponent, opening the Selector gates that represent the chosen literal and closing those

that represent the negation of it (similar reasoning and setup to the Clause gadget description in Section

4.2.4 for our PSPACE-hard proofs).

Property 7.9. The Result gadget can be reached from a speci�c Clause gadget if and only if the Clause

gadget is activated

Justi�cation. The Result gadget can only be reached from a Clause gadget if a bird is able to traverse every

Selector gate within it. As this is clearly only possible if all Selector gates are open, the Clause gadget must

be activated for a bird to reach the Result gadget from it.

37



To summarise, each time that we are checking if either the player's or opponent's Boolean formula is

satis�ed, we are actually sequentially checking if any of the Clause gadgets associated with clauses from their

respective Boolean formulas are activated. If any of these Clause gadgets are activated, then a bird will be

able to travel to the Result gadget. The location that the bird enters the Result gadget depends on whether

the activated Clause gadget that it successfully travelled through was associated with a clause from either

the player's or opponent's Boolean formula.

Property 7.10. The maximum width and height of a Clause gadget, as well as the number of game elements

it contains, is constant.

Justi�cation. As a 12-DNF Boolean formula can contain a maximum of 12 literals, the maximum number

of Selector gates that a Clause gadget can contain is 12. As the width, height and number of elements for

each Selector gate is constant, the maximum width, height and number of elements for a Clause gadget is

also constant.

7.3.5. Result Gadget

The purpose of the Result gadget is to either solve the level or make the level unsolvable, depending

on whether the player's or opponent's Boolean formula was satis�ed �rst after making their move. The

structure of the Result gadget implementation for ABES is shown in Figure 23. This gadget is comprised

of a single Selector gate (S1) that is initially in the open position. Traversing S1 can also be referred to as

passing through the Finish gadget, and results in the level being solved.

Property 7.11. The entry point of the �rst bird to enter the Result gadget will either solve the level or

make it unsolvable.

Justi�cation. If the �rst bird to enter the Result gadget traverses S1, then the bird will kill the pig and solve

the level. If the �rst bird to enter the Result gadget closes S1, then the pig can never be killed and the level

becomes unsolvable.

Because of this, we can simply connect the tunnels so that any bird which enters the Result gadget from

one of the player's activated Clause gadgets attempts to traverse S1 (i.e. attempts to pass through the Result

gadget), and any bird which enters the Result gadget from one of the opponent's activated Clause gadgets

closes S1 (i.e. makes the level unsolvable).

7.3.6. Level Construction

Now that all the necessary gadgets have been described, the only remaining requirement is that they can

be successfully arranged throughout the level space.

Lemma 7.12. Any given game of G2 can be reduced to an ABES level de�nition in polynomial time.

38



Figure 23: Model of the Result gadget used.

Proof. As we have already shown that each of the necessary gadgets can be created using a polynomial

amount of space and elements and can therefore also be described in polynomial time, the only remaining

requirement is that all the gadgets can be successfully arranged throughout the level in polynomial time,

relative to the size of the G2 setup description (two 12-DNF Boolean formulas, variable assignment and

initial variable values). As the number of gadgets required is clearly polynomial, it su�ces to describe a

polynomial time method for determining the location of each gadget, as well as the level's width, height,

slingshot position and number of birds.

By using the same reasoning as in our PSPACE-hard level construction (Lemma 4.14), we know that

the time required to compute the relative placement (spatial arrangement) of these gadgets, as well as the

space between them, is polynomial in the total number of gadgets. There are also always a polynomial

number of tunnels between gadgets and each tunnel can always be connected to its appropriate destination

in polynomial time. Because of this, we can be certain than an equivalent ABES level description for any

given game of G2 can always be created in a polynomial amount of space relative to the length of the original

Boolean formulas, and thus it can also be de�ned in polynomial time. All calculations for slingshot position,

release points needed, level's width/height, etc., can be calculated the same as in Section 4.3.

Lastly, the number of birds the player has is equal to (2Vp + 4)(2VN ), where Vp is equal to the total

number of variables assigned to the player, and VN is equal to the total number of variables assigned to both

the player and the opponent. This is equivalent to the maximum number of birds required to make a move

for both the player and opponent (four birds needed for the Ordering gadget, as well as 2Vp possible literal

options in the Choice gadget), multiplied by the maximum number of possible value combinations for all

variables (2VN ). If the player cannot win the level in this many birds, then at least one of the variable value

combinations has been repeated.

An example diagram of a fully constructed structure, using the same Boolean formula as in Figure 16,

is shown in the Appendix (Figure A.30). For this example, the player is assigned the variables z and w, the

opponent is assigned the variables x and y, and all variables are initially given a negative truth value.

As we have constructed the necessary gadgets and can position them within the game's environment in

polynomial time, the problem of solving levels for ABES is EXPTIME-hard.

Theorem 7.13. The problem of solving levels for ABES is EXPTIME-hard.

39



7.4. Winning Strategy (Example)

We now describe an example of a winning strategy for solving an ABES level description that has been

reduced from the Boolean formulas for the player and opponent given in Figure 16. For this example, the

player is assigned the variables z and w, the opponent is assigned the variables x and y, and all variables

are initially given a negative truth value (same setup as for the example structure diagram in Figure A.30).

For this level description, we can see that the player will immediately need to set the value of w to positive.

If the player doesn't do this then there is a chance that variable y would be changed to positive when the

opponent makes their move, which would mean that the opponent's second clause would be satis�ed (leading

to a loss). To set the variable w to positive we need to open all AUT gates in the Choice gadget except

for the last one. We can then traverse the AUT gates in the Choice gadget via the Ordering gadget, which

will subsequently adjust the Clause gadgets to represent w now being positive. We then need to make a

random move for the opponent, and check if any of their associated Clause gadgets are activated (none of

them are regardless of the outcome of the opponent's random move). After this, we should see that we only

need to set the value of the variable z to positive to satisfy one of our clauses. This is the case regardless of

what move was previously made for the opponent, although the speci�c clause that is satis�ed might change.

After setting z to positive we can then check our clauses for satis�ability, and as one of our Clause gadgets

is activated a bird will pass through the Result gadget and solve the level.

8. Proof Generalisation

The complexity proofs described in this paper can be replicated in many other games similar to Angry

Birds, as long as the necessary gadgets can be constructed. In general, this means that the computational

complexity of any physics-based game can be established using our frameworks, as long as the following

requirements hold. A level within the game contains a set number of targets, which the player needs to

hit or reach in order to solve the level. The game contains both static and non-static elements. The game

contains elements that can be moved as a result of the player's actions. The physics engine utilised by the

game allows for rudimentary systems of gravity, momentum, energy transfer and rotational motion (almost

all simple physics engines should contain this). The player cannot directly in�uence any element within

a gadget framework, instead only being able to interact with it through the use of a secondary non-static

game element (in our case a bird), which enters the gadget framework through designated entry points. No

new element can enter this framework until the outcome of any previously entered element is �nalised. For

our EXPTIME-hardness proof, we also require the exact outcome of certain player actions to be unknown

beforehand.

Whilst by no means applicable to all games that contain these features, this generalisation suggests that

many other physics-based games are NP-hard and/or PSPACE-complete. This includes both games that

are similar in play style to Angry Birds, such as Crush the Castle, Siege Hero or Fragger, as well as games

that play considerably di�erently, such as Where's My Water, World of Goo, Bad Piggies, Cut the Rope 2,

40



Crayon Physics Deluxe, The Incredible Machine, Eets and Peggle, to name just a few. Even though formal

proofs on the complexity of these games would likely each be as long as this paper again, we provide below

some rough outlines for how single-use EQ and Clause gadgets could be implemented for several popular

examples of other physics-based games. Single-use EQ gadgets can only be used to set the value of their

associated variable once, while single-use Clause gadgets remain activated once they are activated the �rst

time (i.e. can't be un-activated). While these single-use gadgets are much less sophisticated than those we

presented previously, they can still be used for NP-hardness proofs based on our 3-SAT reduction framework

as only a single framework cycle is needed.

8.1. Where's My Water

The aim of this game is to get a certain number of water droplets into a speci�c destination pipe. These

water droplets behave in the same manner as red birds in Angry Birds, after they have been �red from the

slingshot. The game contains dirt areas that water droplets cannot pass through, but which the player can

remove by tapping them. The game also contains doors that stop water droplets when closed. Each door

has a button associated with it. When the button associated with a door is pressed by a water droplet, the

door opens. The game also contains pipes that allow water droplets to pass each other without any risk of

leakage or collision. An example level from Where's My Water [40] is shown in Figure 24.

EQ gadget: Each EQ gadget contains a single water droplet and two possible tunnels on either side of

it that are blocked by dirt. The player can remove this dirt by tapping on it, allowing them to direct the

water droplet into either tunnel. Whichever tunnel the player directs the water droplet into indicates the

value to set the associated variable to (i.e. if the water droplet falls into the left/right tunnel then set the

value of the variable to negative/positive). As there is only one water droplet in each EQ gadget, the player

can only set the value of the associated variable once (i.e. this EQ gadget is single-use only).

Clause gadget: Each Clause gadget contains a button that, when touched by a water droplet, opens a

door that releases a set number of water droplets into the destination pipe. When the player indicates the

truth value for a variable using its associated EQ gadget, the water droplet will travel through all the Clause

gadgets that contain the chosen literal, pressing the button within any Clause gadget it travels through (i.e.

pressing the button within a Clause gadget will essentially activate it). As the e�ect of pressing the button

within a Clause gadget cannot be undone, these Clause gadgets are single-use only.

Crossover: Pipes can simply be used to allow water droplets to travel over one another.

Victory condition: The level is solved once all Clause gadgets have released their water droplets into

this destination pipe (i.e. when all Clause gadgets are activated).

8.2. Cut the Rope 2

The aim of this game is to transport a piece of candy to a stationary creature. This piece of candy behaves

in the same manner as red birds in Angry Birds, after they have been �red from the slingshot. The game

contains balloons which can hold objects in a speci�c place (i.e. the object becomes una�ected by gravity).

41



If an object is connected to one balloon then it is suspended a �xed distance directly below this balloon. If

an object is connected to several balloons then it is suspended a �xed distance below the mid-point between

these balloons. The player can remove a balloon by tapping on it (i.e. �pop� the balloon). The game also

contains wooden balls that behave the same as the piece of candy. The game also contains rotating doors

(gear attached to a wooden block) that objects cannot pass through when closed. Each door has a button

associated with it. When the button associated with a door is pressed by an object, the door opens. An

example level from Cut the Rope 2 [41] is shown in Figure 25.

EQ gadget: Each EQ gadget contains a wooden ball that is suspended in place by two balloons, and

two possible tunnels on either side of the wooden ball. The player can pop each of these balloons by tapping

them. The order in which the two balloons suspending the wooden ball are popped can be used to direct

the wooden ball into either tunnel. Whichever tunnel the player directs the wooden ball into indicates the

value to set the associated variable to. As there is only one wooden ball in each EQ gadget, the player can

only set the value of the associated variable once.

Clause gadget: Each Clause gadget contains a button that when touched by a wooden ball, opens a

rotating door outside of the framework. When the player indicates the truth value for a variable using its

associated EQ gadget, the wooden ball will travel through all the Clause gadgets that contain the chosen

literal, pressing the button within any Clause gadget it travels through (i.e. activates the Clause gadget).

Crossover: Crossover gates can be constructed using the exact same design as for Angry Birds (Section

3.4).

Victory condition: The piece of candy is suspended by a balloon above a stack of rotating doors placed

outside the rest of the framework. Each rotating door in this stack is turned on when one of the Clause

gadgets is activated (i.e. each button in a Clause gadget turns on one of these rotating doors). The creature

is placed below this stack of rotating doors. The player can pop the balloon suspending the piece of candy

at any point, but the candy can only reach the creature (i.e. solve the level) if all rotating doors are turned

on (i.e. if all Clause gadgets are activated).

8.3. The Incredible Machine

The aim of this game is to accomplish some prede�ned task for a given environment by placing objects

within the level. For our setup, the only objects that the player can place in the level are candles. The game

contains baseballs that behave in the same manner as red birds in Angry Birds, after they have been �red

from the slingshot. The game also contains brick walls that objects cannot pass through, and TNT that can

be ignited with candle. When a TNT is ignited it will explode and destroy (remove) both itself and any

objects (such as walls) next to it. The game also contains torches that can be turned on by an object hitting

them. The game also contains pipes that allow objects to pass each other without any risk of leakage or

collision. An example level from The Incredible Machine [42] is shown in Figure 26.

EQ gadget: Each EQ gadget contains a baseball and two possible tunnels on either side of it that are

blocked by brick walls. TNT is placed next to each of these brick walls and can be ignited by placing a

42



Figure 24: Screenshot of a level for Where's My Water. Figure 25: Screenshot of a level for Cut the Rope 2.

candle next to it. When a TNT is ignited it will explode and destroy both itself and the brick wall next to

it. Igniting one of these TNTs can therefore be used to direct the baseball into either tunnel. Whichever

tunnel the player directs the baseball into indicates the value to set the associated variable to. As there is

only one baseball in each EQ gadget, the player can only set the value of the associated variable once.

Clause gadget: Each Clause gadget contains a torch. When the player indicates the truth value for a

variable using its associated EQ gadget, the baseball will travel through all the Clause gadgets that contain

the chosen literal, hitting and turning on the torch within any Clause gadget it travels through (i.e. activates

the Clause gadget).

Crossover: Pipes can simply be used to allow baseballs to travel over one another.

Victory condition: The requirement for solving the level is set to turning on all of the torches within

the Clause gadgets (i.e. when all Clause gadgets are activated).

While proofs for NP-hardness and PSPACE-hardness can often be generalised between di�erent video

games, our proposed proof of EXPTIME-hardness is trickier to replicate. We postulate though that it

might be possible to prove that extended versions of other popular games such as Super Mario Bros. are

EXPTIME-hard by introducing elements such as �mystery� boxes which could spawn a random item, thus

providing the necessary uncertainty in player actions. However, a more thorough investigation and research

would be needed to determine if this is possible.

43



Figure 26: Screenshot of a level for The Incredible Machine.

9. Conclusions

In this paper, we have proven that the task of deciding whether a given Angry Birds level can be solved

is either NP-hard, PSPACE-hard, PSPACE-complete or EXPTIME-hard, depending on the version of the

game being used.

To the best of our knowledge, this is the �rst example of a single-player game without a traditional

opponent being proved EXPTIME-hard. Our use of unknown and changing environmental variables as the

opponent which the player is facing, is a unique view of the problem and opens up the possibility of proving

many other games EXPTIME-hard using this methodology. The most likely candidates for this analysis

would be games that feature some inherent stochasticity in their engine (similar to the method employed for

our proof), or games which use randomness within one of their gameplay elements (such as mystery/question

blocks in Mario games). In games like this the player may know what elements the box could contain, but will

not know exactly what it does contain until after they open it. This would be a good basis for constructing an

opponent for a reduction from G2 or another similar EXPTIME-complete game. It is also possible to use the

inaccuracy of the player's input or another similar area of uncertainty to generate the required randomness.

EXPTIME-hardness proofs might also be able to be applied to real-world environments.

This work provides an important contribution to the collection of games that have been investigated

within the �eld of computational complexity. However, there is still a huge assortment of physics-based

and other non-traditional puzzle games that are available for future analysis, which do not follow the typical

structure of those previously studied. The importance of games for AI research lies in the fact that games can

form a simpli�ed and controlled environment, which allows for the development and testing of AI methods

that will eventually be used in the real world. It is also highly likely that the proofs presented in this paper

44



can be generalised to other physical reasoning and AI problems. Even though Angry Birds may initially seem

like a simple game, the challenges that dealing with its physics simulation engine pose make it incredibly

relevant to those in the real world. We are therefore hopeful that this work will inspire future research into

a more diverse range of game types and problems.

Acknowledgments

We would like to thank the three reviewers for their incredibly detailed reviews and the many excellent

suggestions they made for improving this paper.

References

[1] G. Aloupis, E. D. Demaine, A. Guo, G. Viglietta, Classic Nintendo games are (computationally) hard,

in: Proceedings of the 7th International Conference on Fun with Algorithms, 2014, pp. 40�51.

[2] M. Fori²ek, Computational complexity of two-dimensional platform games, in: Proceedings of the 5th

International Conference on Fun with Algorithms, 2010, pp. 214�227.

[3] G. Kendall, A. Parkes, K. Spoerer, A survey of NP-complete puzzles, ICGA Journal 31 (2008) 13�34.

[4] G. Viglietta, Gaming is a hard job, but someone has to do it!, Theory of Computing Systems 54 (2014)

595�621.

[5] Angry birds game, https://www.angrybirds.com/games/angry-birds/, accessed: 2017-08-11.

[6] J. Renz, AIBIRDS: The Angry Birds arti�cial intelligence competition, in: Proceedings of the 29th

AAAI Conference, 2015, pp. 4326�4327.

[7] J. Renz, X. Ge, S. Gould, P. Zhang, The Angry Birds AI competition, AI Magazine 36 (2) (2015) 85�87.

[8] P. A. Walega, M. Zawidzki, T. Lechowski, Qualitative physics in Angry Birds, IEEE Transactions on

Computational Intelligence and AI in Games 8 (2) (2016) 152�165.

[9] M. Polceanu, C. Buche, Towards a theory-of-mind-inspired generic decision-making framework, in: IJ-

CAI Symposium on AI in Angry Birds, 2013, pp. 1�7.

[10] S. Schi�er, M. Jourenko, G. Lakemeyer, Akbaba: An agent for the Angry Birds AI challenge based on

search and simulation, IEEE Transactions on Computational Intelligence and AI in Games 8 (2) (2016)

116�127.

[11] F. Calimeri, M. Fink, S. Germano, A. Humenberger, G. Ianni, C. Redl, D. Stepanova, A. Tucci, A. Wim-

mer, Angry-HEX: An arti�cial player for Angry Birds based on declarative knowledge bases, IEEE

Transactions on Computational Intelligence and AI in Games 8 (2) (2016) 128�139.

45

https://www.angrybirds.com/games/angry-birds/


[12] S. Dasgupta, S. Vaghela, V. Modi, H. Kanakia, s-Birds Avengers: A dynamic heuristic engine-based

agent for the Angry Birds problem, IEEE Transactions on Computational Intelligence and AI in Games

8 (2) (2016) 140�151.

[13] N. Tziortziotis, G. Papagiannis, K. Blekas, A bayesian ensemble regression framework on the Angry

Birds game, IEEE Transactions on Computational Intelligence and AI in Games 8 (2) (2016) 104�115.

[14] A. Narayan-Chen, L. Xu, J. Shavlik, An empirical evaluation of machine learning approaches for Angry

Birds, in: IJCAI Symposium on AI in Angry Birds, 2013, pp. 1�7.

[15] P. Zhang, J. Renz, Qualitative spatial representation and reasoning in Angry Birds: The extended

rectangle algebra, in: Proceedings of the Fourteenth International Conference on Principles of Knowledge

Representation and Reasoning, KR'14, 2014, pp. 378�387.

[16] G. Cormode, The hardness of the Lemmings game, or oh no, more NP-completeness proofs, in: Pro-

ceedings of the 3rd International Conference on Fun with Algorithms, 2004, pp. 65�76.

[17] E. D. Demaine, J. Lockhart, J. Lynch, The computational complexity of Portal and other 3D video

games, CoRR arXiv:1611.10319 (2016) 1�24.

[18] T. Walsh, Candy Crush is NP-hard, CoRR arXiv:1403.1911 (2014) 1�10.

[19] L. Gualà, S. Leucci, E. Natale, Bejeweled, Candy Crush and other match-three games are (NP-)hard,

in: Proceedings of the 2014 IEEE Conference on Computational Intelligence and Games, 2014, pp. 1�8.

[20] R. Kaye, Minesweeper is NP-complete, The Mathematical Intelligence 22 (2000) 9�15.

[21] E. D. Demaine, S. Hohenberger, D. Liben-Nowell, Tetris is hard, even to approximate, in: Computing

and Combinatorics, 9th Annual International Conference, 2003, pp. 351�363.

[22] E. D. Demaine, G. Viglietta, A. Williams, Super Mario Bros. is harder/easier than we thought, in:

Proceedings of the 8th International Conference on Fun with Algorithms, 2016, pp. 1�15.

[23] G. W. Flake, E. B. Baum, Rush hour is pspace-complete, or why you should generously tip parking lot

attendants, Theoretical Computer Science 270 (1) (2002) 895 � 911.

[24] J. Bosboom, E. D. Demaine, A. Hesterberg, J. Lynch, E. Waingarten, Mario kart is hard, in: MIT Open

Access Articles, 2018, pp. 1�12.

[25] L. Hamilton, Braid is undecidable, CoRR arXiv:1412.0784 (2014) 1 � 17.

[26] A. S. Fraenkel, D. Lichtenstein, Computing a perfect strategy for n x n chess requires time exponential

in n, Journal of Combinatorial Theory, Series A 31 (2) (1981) 199 � 214.

46



[27] J. M. Robson, N by N Checkers is Exptime complete, SIAM Journal on Computing 13 (2) (1984)

252�267.

[28] J. M. Robson, The complexity of Go, in: International Federation of Information Processing, 1983, pp.

413�417.

[29] J. C. Cullberson, Sokoban is PSPACE-complete, in: Proceedings of the International Conference on

Fun with Algorithms, 1998, pp. 65�76.

[30] T. C. van der Zanden, H. L. Bodlaender, PSPACE-completeness of bloxorz and of games with 2-buttons,

in: Algorithms and Complexity: 9th International Conference, 2015, pp. 403�415.

[31] E. D. Demaine, M. L. Demaine, J. O'Rourke, PushPush and Push-1 are NP-hard in 2d, in: Proceedings

of the 12th Canadian Conference on Computational Geometry, 2000, pp. 211�219.

[32] E. D. Demaine, R. A. Hearn, M. Ho�mann, Push-2-F is PSPACE-complete, in: Proceedings of the 14th

Canadian Conference on Computational Geometry, 2002, pp. 31�35.

[33] E. D. Demaine, M. Ho�mann, M. Holzer, PushPush-k is PSPACEcomplete, in: Proceedings of the 3rd

International Conference on FUN with Algorithms, 2004, pp. 159�170.

[34] E. D. Demaine, M. L. Demaine, M. Ho�mann, J. O'Rourke, Pushing blocks is hard, in: Proceedings of

the 13th Canadian Conference on Computational Geometry, 2001, pp. 21�36.

[35] J. Renz, X. Ge, R. Verma, P. Zhang, Angry Birds as a challenge for arti�cial intelligence, in: Proceedings

of the 30th AAAI Conference, 2016, pp. 4338�4339.

[36] G. Viglietta, Lemmings is PSPACE-complete, in: Proceedings of the 7th International conference on

Fun with Algorithms, 2014, pp. 340�351.

[37] S. Arora, B. Barak, Computational Complexity: A Modern Approach, 1st Edition, Cambridge Univer-

sity Press, New York, NY, USA, 2009.

[38] M. Stephenson, J. Renz, X. Ge, The computational complexity of angry birds and similar physics-

simulation games, in: AAAI Conference on Arti�cial Intelligence and Interactive Digital Entertainment,

AIIDE'17, 2017, pp. 241�247.

[39] L. J. Stockmeyer, A. K. Chandra, Provably di�cult combinatorial games, SIAM Journal on Computing

8 (2) (1979) 151�174.

[40] Where's My Water, Disney Mobile (2011).

[41] Cut the Rope 2, ZeptoLab (2013).

[42] The Incredible Machine, Dynamix (1993).

47



Appendix A. Full structure construction examples (not to scale)

48



Figure A.27: ABED (PSPACE-complete)

49



Figure A.28: ABPS (PSPACE-hard)

50



Figure A.29: ABPD (NP-hard)

51



Figure A.30: ABES (EXPTIME-hard)

52



Appendix B. Step-by-step shot ordering

Figure B.31: Shots required to solve the level created using the example ABED framework shown in Figures 7 and A.24. Each

row of the table speci�es the target for each shot (gadget, gate, and entrance tunnel when ambiguous), the state of each gadget

after the shot has resolved (whether it is enabled (E), disabled (D), locked (L), or unlocked (U)), and the truth value of each

Boolean variable.

Appendix C. Gadget truth tables

This appendix provides detailed truth tables for each gadget described in this paper (except for the trivial

cases). Empty cells for the current state indicate that the gate in question can be either open or closed. The

bird input point speci�es the gate by which the bird entered the gadget, as well as the speci�c gate entrance

point when ambiguous. Bird input points with the �(Enable)� marker represent that the gadget is enabled

by a bird entering here. Empty cells for the next state indicate that the position of the gate in question is

unchanged. Empty cells for the Output indicate that the bird did not exit the gadget.

53



Figure C.32: EQ gadget truth table.

Figure C.33: UQ-T gadget truth table.

Figure C.34: UQ-F gadget truth table.

Figure C.35: Clause gadget truth table (ABED).

54



Figure C.36: Finish gadget truth table.

Figure C.37: UQ-R gadget truth table.

Figure C.38: Ordering gadget truth table.

Figure C.39: Clause gadget truth table (ABES) example for a clause with three literals.

55


	Introduction
	Angry Birds Game Definition
	Game Variants

	Gates
	Selector Gate
	Automatically Unsetting Transfer Gate
	Random Gate
	Crossover
	Gate Representation
	Terminology

	PSPACE-Completeness of ABED (exponential and deterministic)
	Framework
	Formal framework reference terms
	Gadget design requirements
	Framework design requirements
	Framework process summary

	Gadget Design
	Existential Quantifier (EQ) Gadget
	Universal Quantifier True (UQ-T) Gadget
	Universal Quantifier False (UQ-F) Gadget
	Clause Gadget
	Finish Gadget

	Level Construction
	Winning Strategy (Example)
	In PSPACE

	PSAPCE-Hardness of ABPS (polynomial and stochastic)
	Framework
	Universal Quantifier Random (UQ-R) Gadget
	Winning Strategy (Example)

	NP-Hardness of ABPD (polynomial and deterministic)
	Framework
	Winning Strategy (Example)

	EXPTIME-hardness of ABES (exponential and stochastic)
	EXPTIME-Complete Original Game
	Framework
	Gadget design requirements
	Framework design requirements

	EXPTIME-Hardness
	Ordering Gadget
	Choice Gadget
	Random Gadget
	Clause Gadget
	Result Gadget
	Level Construction

	Winning Strategy (Example)

	Proof Generalisation
	Where's My Water
	Cut the Rope 2
	The Incredible Machine

	Conclusions
	Full structure construction examples (not to scale)
	Step-by-step shot ordering
	Gadget truth tables

